• Title/Summary/Keyword: Fifteen-phase

Search Result 60, Processing Time 0.032 seconds

The Effects of Different Angles of Wedged Insoles on Knee Varus Torque in Healthy Subjects

  • Jung, Do-Young;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Young-Ho;Kim, Jang-Hwan
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 2004
  • The purpose of this study was to examine the effect of the angle of a wedged insole on knee varus torque during walking. Fifteen healthy subjects were recruited. Knee varus torque was measured using three-dimensional motion analysis (Elite). Knee varus torque was normalized to gait cycle (0%: initial contact; 100%: ipsilateral initial contact) and stance phase (0%: initial contact; 100%: ipsilateral toe off). The average peaks of knee varus torque during the stance phase of the gait cycle according to the different insole angles (10 or 15 degrees) were compared using one-way ANOVA with repeated measures. The results showed that in the early stance phase, the average peak knee varus torque increased significantly for both the medial 10 and 15 degree wedged insole conditions and decreased significantly for both the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p<.05). However, there were no significant differences between the 10 and 15 degree wedged insole conditions with either the medial or lateral wedged insole (p>.05). In the late stance phase, the average peak knee varus torque increased significantly for the medial 10 and 15 degree wedged insole conditions (p<.05), but not for the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p>.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and lateral compartment forces in the knee varus-valgus deformity. Further studies of the effects of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

An Advanced Correlation Algorithm between GTEM and OATS for Radiated Emission Tests

  • Lee, Ae-Kyoung
    • ETRI Journal
    • /
    • v.17 no.3
    • /
    • pp.45-63
    • /
    • 1995
  • This paper proposes an algorithm to improve the correlation between giga-hertz transverse electromagnetic (GTEM) cell and open area test site (OATS). It is based on the dipole modeling process of an unknown source object in a GTEM cell and on the evaluation of the approximate far field equations correlated with measured GTEM powers at output port of the GTEM cell. In this algorithm, the relative phase differences between dipole moments play an important part in modeling the test object as a set of dipoles and offer stable calculation of emission values. The radiated emission test using this algorithm requires fifteen orientations of equipment under test, but the increased orientations as compared with the previous method have little effect on the time needed for testing. Radiation from a notebook computer has been tested for statistical analysis of the correlation between GTEM data and OATS data. The emission test results of the notebook computer show that the mean, the standard deviation, and the correlation coefficient are -0.62, 1.99, and +0.85, respectively. These figures indicate that this algorithm provides improved accuracy in the measurement of electromagnetic emissions over the previous method.

  • PDF

The Effect of Height Increase Elevator Shoes Insole on Gait and Foot Pressure (키높이 깔창이 성인남성의 보행 및 발의 압력분포에 미치는 영향)

  • Goo, Bong-Oh
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of 0cm, 2.5cm, 5cm height increase elevator shoes insole on gait and foot pressure Methods: Fifteen young adult were recruited this study. Gait and foot was measured by Gait AnalyzerTM(Tech Storm Inc. korea). Statistical analysis was used one-way ANOVA to know difference between 0cm, 2.5cm insole and 5cm insole Results: There was no significantly difference on foot length, foot width, foot angle, step time during gait. But step length and step width was significantly difference during gait. There was no significantly difference on gait ratio during stance phase. There was significantly difference on forefoot pressure and rearfoot pressure ratio. Conclusion: These results indicate that height increase elevator shoes insole may be caused step length, step width decreaseed during gait. It caused forefoot pressure increased and rearfoot pressure decreased on foot.

An Experimental Study of Ground Motion under the Dynamic Load (동하중재하시 지반진동에 관한 실험적 연구)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.126-131
    • /
    • 1997
  • Recently, the ground motion occurred by vehicles or trains has been recognized one of the major factors of damage of structures nearly the motion source. To isolate the environments from ground motions, it is necessary to understand the wave propagation in half spaces. Especially, Rayleigh wave is the primary concern because it transmits a major portion of the total source energy and decays the energy more slowly with response to distance than the other waves. In this study, the preliminary data(wave length and damping effect) to design the isolating system are obtained. For this, a field dynamic test is performed, using the exciter which can generate the 100kN vertical cyclic load in the range of 1-60 Hz is used. The fifteen accelerometers to measure the ground response are set up in 3 radial direction at intervals of 10 meters in each row. The wave lengths are calculated using the distance and the phase between the measuring points. The damping effects of the Rayleigh-wave are also observed from the experiments.

  • PDF

Effects of Customized 3D-printed Insoles on the Kinematics of Flat-footed Walking and Running

  • Joo, Ji-Yong;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.4
    • /
    • pp.237-244
    • /
    • 2018
  • Objective: Flat-footed people struggle with excessive ankle joint motion during walking and running. This study aimed to investigate the effects of customized three-dimensional 3D-printed insoles on the kinematics of flat-footed people during daily activities (walking and running). Method: Fifteen subjects (height, $169.20{\pm}2.61cm$; age, $22.87{\pm}8.48years$; navicular bone height, $13.2{\pm}1.00mm$) diagnosed with flat feet in a physical examination participated in this study. Results: The customized 3D-printed insoles did not significantly affect 3D ankle joint angles under walking and running conditions. However, they shifted the trajectory of the center of pressure (COP) laterally during fast walking, which enhanced the load distribution on the foot during the stance phase. Conclusion: The customized 3D-printed insoles somewhat positively affected the pressure distribution of flat-footed people by changing the COP trajectory. Further research including comparisons with customized commercial insoles is needed.

THREE-DIMENSIONAL COMPARISON OF FRAMEWORK DISPLACEMENTS JOINED BY VARIOUS CONNECTION TECHNIQUES (연결방법에 따른 주조체 변위에 관한 3차원적 비교연구)

  • Lim, Jang-Seop;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.358-374
    • /
    • 1999
  • This study measured the relative displacements of the five-unit fixed partial dentures as cast with the same fixed partial dentures sectioned and assembled by investment-soldering, solder-ing stand-soldering, and cast-joining techniques A total of fifteen specimens using a type IV gold alloy were one-piece cast as control and then sectioned and assembled five test specimens for each method were prepared. A computerized three dimensional coordinate measuring machine and specially designed cylinder for this study were used. Displacement was defined by six displacement variables for the each of cylinders incorporated in each casting: three component displacements(${\Delta}Lx,\;{\Delta}Ly,\;and\;{\Delta}Lz$) and rotational displacements(${\Delta}{\theta}x,\;{\Delta}{\theta}y,\;{\Delta}{\theta}z$). The global displacement was computed using the mathematical formula ${\Delta}R$ = Global displacement =$\sqrt{{(x'-x)}^2+{(y'-y)}^2+{(z'-z)}^2}$ Under the conditions of this study, the following conclusions were drawn: 1. The investment-soldering group showed the largest mean value of final global displacements, followed by stand-soldering group, cast-joining group and one-piece cast group. However, between the mean values of final global displacement for the cast-joining group and one-piece cast group, there was no significant difference. 2. For investment-soldering and stand-soldering groups, the greater global displacements were recorded in soldering phase than in indexing or investing phase. 3. For one-piece cast group, the displacements occured mostly in the casting phase. And for cast-joining group, there was no significant difference in global displacements among the fabricating procedures. 4. Intercentroidal distance decreased in framework-patterning, solder-indexing, solder-standing, and soldering phases, but increased in investment block-investing and casting phases. 5 Specially designed cylinder for touch-trigger type coordinate measuring machine was validated.

  • PDF

The Effect of Exercise Intensity on Muscle Activity and Kinematic Variables of the Lower Extremity during Squat

  • Jung, Jae-Hu;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.197-203
    • /
    • 2017
  • Objective: The purpose of this study was to determine how exercise intensity affects muscle activity and kinematic variables during squat. Method: Fifteen trainers with >5 years of experience were recruited. For the electromyography (EMG) measurements, four surface electrodes were attached to both sides of the lower extremity to monitor the rectus femoris (RF) and biceps femoris. Three digital camcorders were used to obtain three-dimensional kinematics of the body. Each subject performed a squat in different conditions (40% one-repetition maximum [40%1RM], 60%1RM, and 80%1RM). For each trial being analyzed, three critical instants and two phases were identified from the video recording. For each dependent variable, one-way analysis of variance with repeated measures was used to determine whether there were significant differences among the three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: The results showed that the average integrated EMG values of the RF were significantly greater in 80%1RM than in 40%1RM during the extension phase. The temporal parameter was significantly longer in 80%1RM than in 40%1RM and 60%1RM during the extension phase. The joint angle of the knee was significantly greater in 80%1RM than in 40%1RM at flexion. The range of motion of the knee was significantly less in 80%1RM than in 40%1RM and 60%1RM during the flexion phase and the extension phase. The angular velocity was significantly less in 80%1RM than in 40%1RM and 60%1RM during the extension phase. Conclusion: Generally, the increase of muscle strength decreases the pace of motion based on the relation between the strength and speed of muscle. In this study, we also found that the increase of exercise intensity may contribute to the increase of the muscle activity of the RF and the running time in the extension phase during squat motion. We observed that increased exercise intensity may hinder the regulation of the range of motion and joint angle. It is suitable to perform consistent movements while controlling the proper range of motion to maximize the benefit of resistance training.

A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers (신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구)

  • An, Song-Y;Kim, Sang-Bum;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.

Optimum Design of Multi-beam Large Reflector Antenna for Satellite Payload (위성 탑재용 다중빔 대형 반사판 안테나의 최적 설계)

  • Yun, So-Hyeun;Uhm, Man-Seok;Yom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.45-49
    • /
    • 2010
  • This paper presents the study on multi-beam large aperture antenna systems for a satellite payload. Multi-beam large antenna provides the universal communication and broadcasting services to personal portable terminals. The hybrid antenna composed of a large reflector and a feed array forms multi-beams. The feed cluster consists of a group of feed elements and each element should be optimized for the appropriate amplitude and phase. The optimization progress for amplitude and phase was performed by GO (Geometrical Optics) and PO (Physical Optics) method. The number of feed elements as well as the power level per element were also optimized to meet the required EIRP (Effective Isotropically Radiated Power). In conclusion, 30m-class reflector and twenty five elements for fifteen beams over Korean Peninsula were designed through the optimization process.

Influence of Walking With High-Heeled Shoes on the Knee Joint of Obese Women (하이힐 보행이 비만여성의 슬관절에 미치는 영향)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.23-31
    • /
    • 2007
  • The purpose of this study was to determine the influence of high-heeled shoes on walking of obese women as it was already proven an extrinsic factor of knee osteoarthritis in women with normal weight. In this study the aimed therefore in particular was to utilize high-heeled shoes in proving it's causal influence on knee osteoarthritis by measuring the angle and torque of the knee joint. Fifteen obese women (BMI>25 $kg/m^2$) were measured in their twenties. Each angle and torque of their knee joints during walking on 6.5 cm high-heeled shoes and with a bare feet, were compared with each other and analyzed with a 3D motion analysis system. There was no significant difference in walking speed, cadence and stride length between the two conditions. However, there was a significant increase in a double limb support time and the stance phase when walking on high-heeled shoes as when walking with bare feet. The peak knee flexion angle and peak knee varus torque was higher when walking on high-heeled shoes than with bare feet. On the contrary, the peak knee flexion angle in the swing phase was not statistically different. The prolongation of peak knee varus torque was also proven. There was a significant increase in peak knee varus torque in the initial and last stance phases during walking on high-heeled shoes as compared to walking on bare feet. Through the above results, it was proven that when obese women walked on high-heeled shoes, rather than with bare feet, peak knee flexor and varus torque increased along with the changes of the in knee joint angle. Therefore, the influence of high-heeled shoes might be a significant intrinsic factor in knee osteoarthritis of obese women.

  • PDF