• Title/Summary/Keyword: Field-in-Field technique

Search Result 4,911, Processing Time 0.043 seconds

Field-in-Field Technique to Improve Dose Distribution in the Junction of the Field with Head & Neck Cancer (Field-in-Field Technique을 이용한 두경부암의 접합부위 선량개선에 관한 고찰)

  • Kim, Seon-Myeong;Lee, Yeong-Cheol;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • Purpose: In treating head and neck cancer, it is very important to irradiate uniform dose on the junction of the bilateral irradiation field of the upper head and neck and the anterior irradiation field of the lower neck. In order to improve dose distribution on the junction, this study attempted to correct non uniform dose resulting from under dose and over dose using the field-in-field technique in treating the anterior irradiation field of the lower neck and to apply the technique to the treatment of head and neck cancer through comparison with conventional treatment. Materials and Methods: In order to examine dose difference between the entry point and the exit point where beam diffusion happens in bilateral irradiation on the upper head and neck, we used an anthropomorphic phantom. Computer Tomography was applied to the anthropomorphic phantom, the dose of interest points was compared in radiation treatment planning, and it was corrected by calculating the dose ratio at the junction of the lower neck. Dose distribution on the junction of the irradiated field was determined by placing low-sensitivity film on the junction of the lower neck and measuring dose distribution on the conventional bilateral irradiation of the upper head and neck and on the anterior irradiation of the lower neck. In addition, using the field-in-field technique, which takes into account beam diffusion resulting from the bilateral irradiation of the upper head and neck, we measured difference in dose distribution on the junction in the anterior irradiation of the lower neck. In order to examine the dose at interest points on the junction, we compared and analyzed the change of dose at the interest points on the anthropomorphic phantom using a thermoluminescence dosimeter. Results: In case of dose sum with the bilateral irradiation of the upper head and neck when the field-in-field technique is applied to the junction of the lower neck in radiation treatment planning, The dose of under dose areas increased by 4.7~8.65%. The dose of over dose areas also decreased by 2.75~10.45%. Moreover, in the measurement using low-sensitivity film, the dose of under dose areas increased by 11.3%, and that of over dose areas decreased by 5.3%. In the measurement of interest point dose using a thermoluminescence dosimeter, the application of the field-in-field technique corrected under dose by minimum 7.5% and maximum 17.6%. Thus, with the technique, we could improve non.uniform dose distribution. Conclusion: By applying the field-in-field technique, which takes into account beam divergence in radiation treatment planning, we could reduce cold spots and hot spots through the correction of dose on the junction and, in particular, we could correct under dose at the entry point resulting from beam divergence. This study suggests that the clinical application of the field-in-field technique may reduce the risk of lymph node metastasis caused by under dose on the cervical lymph node.

  • PDF

A comparative study of dose distribution for whole brain with field-in-field technique (전뇌(Whole Brain)치료 시 Field-in-Field Technique 적용에 관한 고찰)

  • Kim Bo Kyoum;Lee Je Hee;Jung Chi Hoon;Pack Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • Purpose : Uniform dose distribution of the target volume is very important in the radiation treatment. We will evaluate the usefulness of Field-in-Field Technique use to get uniform dose distribution of the target volume and try to find Apply possibility out to a whole brain treatment patient of various thickness. Material and method : We compare the dose distribution when we applied Field-in-Field Technique and parallel opposed fields technique. establish the treatment plan to a phantom(acryl 16cm spheral phantom) and do the measurement, assessment use the TLD and Low sensitivity film. Also the assessment did Apply possibility of Field-in-Field Technique to 20 patient object of various thickness. Result : In the case to use the parallel opposed fields at the whole brain treatment $10-12\%$ high dose region appeared but reduce to $3-4\%$ lesses when we used the Field-in-Field technique. We could get similar numerical value the film and TLD measurement result also. The change of the dose distribution appeared to its ${\pm}1{\sim}2\%$ although it applied such Field-in-Field technique to various patient so that we were identical. Conclusion : We can get uniform dose distribution of in the treatment region if we apply the Field-in-Field technique at the whole brain treatment. Also alternate can play the role of the wedge filter and 3D compensator and We are thought by minimizing the obstacle to be happened due to the high dose region when radiation treatment.

  • PDF

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

Evaluation of the Dose According to the Movement of Breath During Field-in-Field Technique Treatment of Breast Cancer Patients (유방암 환자의 Field-in-Field Technique 치료 시 호흡의 움직임에 따른 선량 평가)

  • Kwon, Kyung-Tae
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.561-566
    • /
    • 2018
  • Field-in-Field Technique is applied to the radiation therapy of breast cancer patients, and it is possible to compensate the difference in breast thickness and deliver uniform dose in the breast. However, there are several fields in the treatment field that result in a more complex dose delivery than a single field dose delivery. If the patient's respiration is irregular during the delivery of the dose by several fields and the change of respiration occurs, the dose distribution in the breast changes. Therefore, based on the computed tomography images of breast cancer patients, a human model was created by using a 3D printer (Builder Extreme 1000) to describe the volume in the same manner. A computerized tomography (CT) of the human body model was performed and a treatment plan of 260 cGy / fx was established using a 6-MV field-in-field technique using a computerized treatment planning system (Eclipse 13.6, Varian, USA). The distribution of the dose in the breast according to the change of the respiration was measured using a moving phantom at 0.1 cm, 0.3 cm, 0.5 cm amplitude, using a MOSOXIDE Silicon Field Effect Transistor (MOSFET, Best Medical, Canada) Were measured and compared. The distribution of dose in the breast according to the change of respiration showed similar value within ${\pm}2%$ in the movement up to 0.3 cm compared to the treatment plan. In this experiment, we found that the dose distribution in the breast due to the change of respiration when the change of respiration was increased was not much different from the treatment plan.

A Smart Setup for Craniospinal Irradiation

  • Peterson, Jennifer L.;Vallow, Laura A.;Kim, Siyong;Casale, Henry E.;Tzou, Katherine S.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.230-236
    • /
    • 2013
  • Our purpose is to present a novel technique for delivering craniospinal irradiation in the supine position using a perfect match, field-in-field (FIF) intrafractional feathering, and simple forward-optimization technique. To achieve this purpose, computed tomography simulation was performed with patients in the supine position. Half-beam, blocked, opposed, lateral, cranial fields with a collimator rotation were matched to the divergence of the superior border of an upper-spinal field. Fixed field parameters were used, and the isocenter of the upper-spinal field was placed at the same source-to-axis distance (SAD), 20 cm inferior to the cranial isocenter. For a lower-spinal field, the isocenter was placed 40 cm inferior to the cranial isocenter at a constant SAD. Both gantry and couch rotations for the lower-spinal field were used to achieve perfect divergence match with the inferior border of the upper-spinal field. A FIF technique was used to feather the craniospinal and spinal-spinal junction daily by varying the match line over 2 cm. The dose throughout the target volume was modulated using the FIF simple forward optimization technique to obtain homogenous coverage. Daily, image-guided therapy was used to assure and verify the setup. This supine-position, perfect match craniospinal irradiation technique with FIF intrafractional feathering and dose modulation provides a simple and safe way to deliver treatment while minimizing dose inhomogeneity.

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok;Yun, Sang-Jun;Moon, Joon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.8-10
    • /
    • 2015
  • The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.

A Novel Color Breakup Measurement Technique for Field Sequential Display

  • Lai, Yueh-Yi;Liao, Wen-Hung;Mo, Chi-Neng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1069-1072
    • /
    • 2009
  • Field sequential display has some advantages but color breakup (CBU) is the significant problem. Many researches had introduced several methods to reduce CBU phenomenon, however there are no reliable methods to measure the degree of CBU. In this report, a novel CBU measurement technique which was based on the image processing method and subjective analysis results had proposed to evaluate the degree of CBU. Color Breakup Index (CBI) was presented to be a useful index to recognize the CBU phenomenon in the different field sequential technique displays.

  • PDF

Feasibility Study of Isodose Structure Based Field-in-Field Technique for Total Body Irradiation (전신조사방사선치료 시 Isodose Structure를 이용한 Field-in-Field Technique의 유용성 평가)

  • Lee, Yoon Hee;Ban, Tae Joon;Lee, Woo Seok;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: In Asan Medical Center, Two parallel opposite beams are employed for total body irradiation. Patients are required to be in supine position where two arms are attached to mid axillary line. Normally, physical compensators are required to compensate the large dose difference for different parts of body due to the different thicknesses compared to the umbilicus separation. There was the maximum dose difference up to 30% in lung and chest wall compared to the prescription dose. In order to resolve the dose discrepancy occurring on different body regions, the feasibility of using Fieid-in-Field Technique is investigated in this study. Materials and Methods: CT scan was performed to The RANDO Phantom with fabricated two arms and sent to Eclipse treatment planning system (version 10.0, Varian, USA). Conventional plan with physical lead compensator and new plan using Field-in-Field Technique were established on TPS. AAA (Anisotropic Analytical Algorithm) dose calculation algorithm was employed for two parallel opposite beams attenuation. Results: The dose difference between two methods was compared with the prescription dose. The dose distribution of chest and anterior chest wall uncovered by patient arms was 114~124% for physical lead compensator while Field-in-Field Technique gave 106~107% of the dose distribution. In-vivo dosimetry result using TLD showed that the dose distribution to the same region was 110~117% for conventional physical compensator and 104~107% for Field-in-Field Technique. Conclusion: In this study, the feasibility of using FIF technique has been investigated with fabricated arms attached Rando phantom. The dose difference was up to 17% due to the attached arms. It is shown that the dose homogeneity is within ${\pm}10%$ with the CT based 3-dimensional 4 step FIF technique. The in-vivo dosimetry result using TLD was showed that 95~107% dose distribution compared to prescription dose. It is considered that CT based 3-dimensional Field-in-Field Technique for the total body irradiation gives much homogeneous dose distribution for different body parts than the conventional physical compensator method and might be useful to evaluate the dose on each part of patient body.

  • PDF

Field emission properties of the silicon field emission arrays coated with diamond-like carbon film prepared by filtered cathodic vacuum arc technique (진공아크방전으로 제작된 다이아몬드상 탄소 박막이 코팅된 실리콘 전계 방출 소자의 전계 방출 특성)

  • 황한욱;김용상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.326-331
    • /
    • 2000
  • We have fabricated the field emitter arrays coated with diamond-like carbon (DLC) films that improved the field emission characteristics. The nitrogen doped DLC films are prepared by the filtered cathodic vacuum are (FCVA) tehnique. The activation energy of the nitrogen doped DLC films are derived from electrical conductivity measurements. The silicon field emission arrays (FEAs) were prepared by the VLSI technique. The turn-on field was rapidly decreasing and the emission current was remarkably increasing the DLC-coated FEAs than the non-coated silicon FEAs. In the nitrogen doped FEAs, the turn-on field decreased and the emission current increased with increasing the nitrogen found out the field emission current and the work function of the DLC-coated FEAs was remarkably decreased than that of the non-coated silicon FEAs. As nitrogen doping concentrations are increased the work function of FEAs is decreased and the field emission properties are improved in nitrogen doped DLC-coated FEAs. This phenomenon in due the fact that the Fermi energy level moves to the conduction band by increasing nitrogen doping concentration.

  • PDF

Simple Estimation of Sound Source Directivity in Diffused Acoustic Field: Numerical Simulation (확산음향장에서의 음원 지향성 간이추정: 수치시뮬레이션)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.421-426
    • /
    • 2019
  • The directivity of an underwater sound source should be measured in an acoustically open field such as a calm sea or lake, or an anechoic water tank facility. However, technical difficulties arise when practically implementing this in open fields. Signal processing-based techniques such as a sound intensity method and near-field acoustic holography have been adopted to overcome the problem, but these are inefficient in terms of acquisition and maintenance costs. This study established a simple directivity estimation technique with data acquisition, filtering, and analysis tools. A numerical simulation based on an acoustic radiosity method showed that the technique is practicable for sound source directivity estimation in a diffused reverberant acoustic field like a reverberant water tank.