• Title/Summary/Keyword: Field-in-Field (FIF)

Search Result 12, Processing Time 0.024 seconds

Evaluation of Surface Dose for Field-in-Field (FIF) Technique in Breast Radiotherapy (유방암 방사선치료에서 Field-in-Field (FIF) 기법의 조사면 주변 선량 분석)

  • Il-Hoon, Cho;Daehong, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.851-856
    • /
    • 2022
  • The purpose of this study is to confirm the effect of reducing the surface dose around the radiation field in breast cancer radiotherapy using the Field-in-Field (FIF) technique. X-ray was exposed from a linear accelerator (Linac) was used for irradiation, and the surface dose was measured with a glass dosimeter. The source-to-surface distance (SSD) was 90 cm, the field size is 10 × 10 cm2, and the X-ray energy was 6 MV and 10 MV, respectively. The surface dose of the FIF was compared with the dose measured in the physical wedge (PW) and dynamic wedge (DW). Wedge angles of 15° and 30° were used in the PW and DW, respectively. Surface dose was measured at 1 cm, 3 cm, and 5 cm from the center of the field size, respectively. According to the results, FIF showed lower surface dose compared to PW and DW regardless of the energy of the X-ray beam, wedge angle, and dose measurement point. Since FIF could reduce the radiation dose in periphery of the field size in breast cancer treatment, it is expected to be able to reduce the secondary damage caused by the radiation beam as well as to obtain a uniform dose distribution on the target.

A Smart Setup for Craniospinal Irradiation

  • Peterson, Jennifer L.;Vallow, Laura A.;Kim, Siyong;Casale, Henry E.;Tzou, Katherine S.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.230-236
    • /
    • 2013
  • Our purpose is to present a novel technique for delivering craniospinal irradiation in the supine position using a perfect match, field-in-field (FIF) intrafractional feathering, and simple forward-optimization technique. To achieve this purpose, computed tomography simulation was performed with patients in the supine position. Half-beam, blocked, opposed, lateral, cranial fields with a collimator rotation were matched to the divergence of the superior border of an upper-spinal field. Fixed field parameters were used, and the isocenter of the upper-spinal field was placed at the same source-to-axis distance (SAD), 20 cm inferior to the cranial isocenter. For a lower-spinal field, the isocenter was placed 40 cm inferior to the cranial isocenter at a constant SAD. Both gantry and couch rotations for the lower-spinal field were used to achieve perfect divergence match with the inferior border of the upper-spinal field. A FIF technique was used to feather the craniospinal and spinal-spinal junction daily by varying the match line over 2 cm. The dose throughout the target volume was modulated using the FIF simple forward optimization technique to obtain homogenous coverage. Daily, image-guided therapy was used to assure and verify the setup. This supine-position, perfect match craniospinal irradiation technique with FIF intrafractional feathering and dose modulation provides a simple and safe way to deliver treatment while minimizing dose inhomogeneity.

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF

Feasibility Study of Isodose Structure Based Field-in-Field Technique for Total Body Irradiation (전신조사방사선치료 시 Isodose Structure를 이용한 Field-in-Field Technique의 유용성 평가)

  • Lee, Yoon Hee;Ban, Tae Joon;Lee, Woo Seok;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: In Asan Medical Center, Two parallel opposite beams are employed for total body irradiation. Patients are required to be in supine position where two arms are attached to mid axillary line. Normally, physical compensators are required to compensate the large dose difference for different parts of body due to the different thicknesses compared to the umbilicus separation. There was the maximum dose difference up to 30% in lung and chest wall compared to the prescription dose. In order to resolve the dose discrepancy occurring on different body regions, the feasibility of using Fieid-in-Field Technique is investigated in this study. Materials and Methods: CT scan was performed to The RANDO Phantom with fabricated two arms and sent to Eclipse treatment planning system (version 10.0, Varian, USA). Conventional plan with physical lead compensator and new plan using Field-in-Field Technique were established on TPS. AAA (Anisotropic Analytical Algorithm) dose calculation algorithm was employed for two parallel opposite beams attenuation. Results: The dose difference between two methods was compared with the prescription dose. The dose distribution of chest and anterior chest wall uncovered by patient arms was 114~124% for physical lead compensator while Field-in-Field Technique gave 106~107% of the dose distribution. In-vivo dosimetry result using TLD showed that the dose distribution to the same region was 110~117% for conventional physical compensator and 104~107% for Field-in-Field Technique. Conclusion: In this study, the feasibility of using FIF technique has been investigated with fabricated arms attached Rando phantom. The dose difference was up to 17% due to the attached arms. It is shown that the dose homogeneity is within ${\pm}10%$ with the CT based 3-dimensional 4 step FIF technique. The in-vivo dosimetry result using TLD was showed that 95~107% dose distribution compared to prescription dose. It is considered that CT based 3-dimensional Field-in-Field Technique for the total body irradiation gives much homogeneous dose distribution for different body parts than the conventional physical compensator method and might be useful to evaluate the dose on each part of patient body.

  • PDF

Verification of Non-Uniform Dose Distribution in Field-In-Field Technique for Breast Tangential Irradiation (유방암 절선조사 시 종속조사면 병합방법의 불균등한 선량분포 확인)

  • Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Bang, Dong-Wan;Kim, Yon-Lae;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.277-282
    • /
    • 2010
  • The study is to verify non-uniform dose distribution in Field-In-Field (FIF) technique using two-dimensional ionization chamber (MatriXX, Wellhofer Dosimetrie, Germany) for breast tangential irradiation. The MatriXX and an inverse planning system (Eclipse, ver 6.5, Varian, Palo Alto, USA) were used. Hybrid plans were made from the original twenty patients plans. To verify the non-uniform dose distribution in FIF technique, each portal prescribed doses (90 cGy) was delivered to the MatriXX. The measured doses on the MatriXX were compared to the planned doses. The quantitative analyses were done with a commercial analyzing tool (OmniPro IMRT, ver. 1.4, Wellhofer Dosimetrie, Germany). The delivered doses at the normalization points were different to average 1.6% between the calculated and the measured. In analysis of line profiles, there were some differences of 1.3-5.5% (Avg: 2.4%), 0.9-3.9% (Avg: 2.5%) in longitudinal and transverse planes respectively. For the gamma index (criteria: 3 mm, 3%) analyses, there were shown that 90.23-99.69% (avg: 95.11%, std: 2.81) for acceptable range ($\gamma$-index $\geq$ 1) through the twenty patients cases. In conclusion, through our study, we have confirmed the availability of the FIF technique by comparing the calculated with the measured using MatriXX. In the future, various clinical applications of the FIF techniques would be good trials for better treatment results.

Dosimetric Effects of Intrafractional Organ Motion in Field-in-Field Technique for Whole-Breast Irradiation

  • Hong, Chae-Seon;Ju, Sang Gyu;Choi, Doo Ho;Han, Youngyih;Huh, Seung Jae;Park, Won;Ahn, Yong Chan;Kim, Jin Sung;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.30 no.3
    • /
    • pp.65-73
    • /
    • 2019
  • Purpose: We evaluated the motion-induced dosimetric effects on the field-in-field (FIF) technique for whole-breast irradiation (WBI) using actual patient organ motion data obtained from cine electronic portal imaging device (cine EPID) images during treatment. Materials and Methods: Ten breast cancer patients who received WBI after breast-conserving surgery were selected. The static FIF (SFIF) plan involved the application of two parallel opposing tangential and boost FIFs. To obtain the amplitude of the internal organ motion during treatment, cine EPID images were acquired five times for each patient. The outside contour of the breast (OCB) and chest wall (CW) contour were tracked using in-house motion analysis software. Intrafractional organ motion was analyzed. The dynamic FIF (DFIF) reflecting intrafractional organ motion incorporated into the SFIF plan was calculated and compared with the SFIF in terms of the dose homogeneity index (DHI90/10) for the target and V20 for the ipsilateral lung. Results: The average motion amplitudes along the X and Y directions were 1.84±1.09 mm and 0.69±0.50 mm for OCB and 1.88±1.07 mm and 1.66±1.49 mm for CW, respectively. The maximum motion amplitudes along the X and Y directions were 5.53 and 2.08 mm for OCB and 5.22 and 6.79 mm for CW, respectively. Significant differences in DHI90/10 values were observed between SFIF and DFIF (0.94 vs 0.95, P<0.05) in statistical analysis. The average V20 for the lung in the DFIF was slightly higher than that of the SFIF in statistical analysis (19.21 vs 19.00, P<0.05). Conclusion: Our findings indicate that the FIF technique can form a safe and effective treatment method for WBI. Regular monitoring using cine EPID images can be effective in reducing motion-induced dosimetric errors.

Dosimetric Advantages of the Field-in-field Plan Compared with the Tangential Wedged Beams Plan for Whole-breast Irradiation (유방암 환자의 방사선치료에 있어서 순치료계획 세기변조방사선치료법과 쐐기접선조사기법의 선량측정 비교)

  • Kim, Suzy;Choi, Yunseok
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.199-204
    • /
    • 2014
  • The purpose of this study is to evaluate the dosimetric outcome of the field-in-field (FIF) plans compared with tangential wedged beams (TWB) plans for whole breast irradiation of breast cancer patients. Twenty patients with right-sided breast cancer and 10 patients with left-sided breast cancer were retrospectively enrolled in this study. We generated a FIF plan and a TWB plan for each patient to compare dosimetric outcomes. The dose the homogeneity index (HI), the conformity index (CI) and the uniformity index (UI) were defined and used for comparison of the dosimetric outcome of the planning target volume (PTV). To compare the dosimetric outcome of the organs at risk, the mean dose ($D_{mean}$) and the percentage of volumes receiving more than 10, 20 and 30 Gy of the ipsilateral lung and heart were used. The FIF plans had significantly lower HI (p=0.002), higher UI (p=0.000) and CI (p=0.000) than those of the TWB plans, which means that the FIF plans were better than the TWB plans in the dosimetric comparisons of the PTV. The $V10_{lung}$ ($17.1{\pm}7.1$ vs. $18.6{\pm}6.6%$, p=0.020) and $V30_{lung}$ ($10.3{\pm}5.1%$ vs. $10.7{\pm}5.2%$, p=0.000) were lower with the FIF plans compared with those of the TWB plans, with statistical significance. For the left-sided breast cancer patients, $D_{mean}$ of the heart ($2.6{\pm}1.3$ vs. $3.2{\pm}1.4$ Gy, p=0.000), $V20_{heart}$ ($3.4{\pm}2.6$ vs. $3.6{\pm}2.8%$, p=0.005) and $V30_{heart}$ ($2.6{\pm}2.3%$ vs. $2.9{\pm}2.4%$, p=0.004) were significantly lower for the FIF plans in comparison with those of the TWB plans. The FIF plans increased the dose homogeneity, conformity and uniformity of the target volume for the whole-breast irradiation compared with the TWB plans. Moreover, FIF plans reduced the doses to the ipsilateral lung and heart.

Usefulness evaluation of Hybrid planning through dosimetric comparision of Three Dimensinal Conformal Radiation Radiotherapy and Hybrid planning for left breast cancer (유방암 환자의 방사선 치료시 Energy와 Wedge를 combine한 Hybrid plan의 유용성 평가)

  • Chae, Moon Ki;Park, Byung Soo;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • Purpose : To compare the dosimetry for the left breast cancer treatment between three dimensional conformal radiation radiotherapy (3D-CRT) and Hybrid planning and to estimate usefulness of Hybrid planning Materials and Methods : Five patients with left breast cancer were included in the study. They were planned using several different radiotherapy techniques including: 1)open rectangular field, 2)tangential wedge-based field 3)field in field, 4)hybrid planning(energy, wedge combine). For each patient planning was using Light Speed RT-16 CT and PINNACLE planning system-ver.9.2. Hybrid plan was made using same system and using the same targets and optimization goals. We comparing the Homogeneity Index(HI), normal organs at the does-volume histogram(DVH) Results : In all plans, the Homogeneity Index(HI) of Hybrid planning was significantly better than other. Dose comparison of HI= 2D-RT:38.32, TW:38.32, FIF:29.22, HYBRID:30.57. 2D-RT, TW, FIF Hybrid$V_{75_-lung}$=112.33, 125.14, 121.3, 123.78. $V_{50_-lung}$=155.43, 159.62, 157.96, 159.06. $V_{25_-lung}$=199.86, 200.22, 198.65, 200.31. $V_{50_-heart}$=26.07, 27.1, 26.85, 27.17 $V_{30_-heart}$=33.71, 34.37, 34.15, 34.65 Conclusion : In summary, 3D-CRT, Hybrid planning techniques were found to have acceptableCTV coverage in our study. However the Hybrid planning increased radiation dose exposure to normal tissue. If you apply for treatment of inhomogeneity areas like lung, For best results will be achieved.

Selection of radiation treatment plan technique at breast cancer operating technique (유방암 수술기법에 따른 방사선치료계획 기법의 선택)

  • Kim, Jeong-Ho;Bae, Seok-Hwan;Kim, Ki-Jin;Yoo, Se-Jong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.125-130
    • /
    • 2015
  • Techniques, using physical wedge filter and using dynamic wedge filter and FIF(Field in Field) and ISCT(Irregular Surface Compensating Technique), have been developed according to progress of radiation therapy of breast cancer. Measurement of dose was done to judge the usefulness of technique using three cases, non tissue loss after breast conserving operating and tissue loss after breast conserving operating and mastectomy. Dose indexes of breast tissue, CI (Conformity Index), HI (Homogeneity Index) and QOC (Quality of Coverage), dose index of skin, or dose indexes of lung, volume of 50 percent dose and 20 percent dose were estimated and compared. Using dynamic wedge filter is useful plan at non tissue loss allowing for high dose of lung. FIF and ISCT are useful plan at tissue loss. ISCT is useful plan at mastectomy. Henceforth, we need to apply to valid plan and body type and thorax size.

Evaluation of Scattered Dose to the Contralateral Breast by Separating Effect of Medial Tangential Field and Lateral Tangential Field: A Comparison of Common Primary Breast Irradiation Techniques (유방암 접선조사 치료 방법에 대한 반대쪽 유방에서의 산란선량 평가)

  • Ban, Tae-Joon;Jeon, Soo-Dong;Kwak, Jung-Won;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2012
  • Purpose: The concern of improving the quality of life and reducing side effects related to cancer treatment has been a subject of interest in recent years with advances in cancer treatment techniques and increasing survival time. This study is an analysis of differing scattered dose to the contralateral breast using common different treatment techniques. Materials and Methods: Eclipse 10.0 (Varian, USA) based $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FiF (field in field) plan were established using CT image of breast phantom which in our hospital. Each treatment plan were designed to exposure 400 cGy using CL-6EX (VARIAN, USA) and we measured scattered dose at 1 cm, 3 cm, 5 cm, 9 cm away from medial side of the phantom at 1 cm depth using ionization chamber (FC 65G, IBA). We carried out measurement by separating effect of medial tangential field and lateral tangential field and analyze. Results: The evaluation of scattered dose to contralateral breast, $30^{\circ}$ EDW plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FIF plan showed 6.55%, 4.72%, 2.79%, 2.33%, 1.87% about prescription dose of each treatment plan. The result of scattered dose measurement by separating effect of medial tangential field and lateral tangential field results were 4.94%, 3.33%, 1.55%, 1.17%, 0.77% about prescription dose at medial tangential field and 1.61%, 1.40%, 1.24%, 1.16%, 1.10% at lateral tangential field along with measured distance. Conclusion: In our experiment, FiF treatment technique generates minimum of scattered dose to contralateral breast which come from mainly phantom scatter factor. Whereas $30^{\circ}$ wedge plan generates maximum of scattered doses to contralateral breast and 3.3% of them was scattered from gantry head. The description of treatment planning system showed a loss of precision for a relatively low scatter dose region. Scattered dose out of Treatment radiation field is relatively lower than prescription dose but, in decision of radiation therapy, it cannot be ignored that doses to contralateral breast are related with probability of secondary cancer.

  • PDF