• 제목/요약/키워드: Field-domain

검색결과 1,665건 처리시간 0.029초

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

Microscopic Domain Structures in NiO Exchange-coupled Films

  • Hwang, D.G.;Kim, J.K.;Kim, S.W.;Lee, S.S.;Dreyer, M.;Gomez, R.D.
    • Journal of Magnetics
    • /
    • 제7권3호
    • /
    • pp.94-97
    • /
    • 2002
  • The dependence on nickel oxide thickness and a ferromagnetic layer thickness in unidirectional and isotropic exchange-coupled NiO/NiFe(Fe) bilayer films was investigated by magnetic force microscopy to better understand the relation between magnetic domain structure and exchange biasing at microscopic length scales. As the NiO thickness increased, the domain structure of unidirectional biased films formed smaller and more complex in-plane domains. By contrast, for the isotropically coupled films, large domains generally formed with increasing NiO thickness including a cross type domain with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing field, and the fact that the domain mainly originated from the strongest exchange coupled region was confirmed by imaging in an applied external field during a magnetization cycle.

Thickness-dependent magnetic domain structures of Co ultra-thin film investigated by scanning transmission X-ray microscopy

  • Yoon, Ji-Soo;Kim, Namdong;Moon, Kyoung-Woong;Lee, Joo In;Kim, Jae-Sung;Shin, Hyun-Joon;Kim, Wondong
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1185-1189
    • /
    • 2018
  • Thickness-dependent magnetic domain structure of ultrathin Co wedge films (0.3 nm-1.0 nm) sandwiched by Pt layers was investigated by scanning transmission x-ray microscopy (STXM) employing X-ray magnetic circular dichroism (XMCD), utilizing elliptically polarized soft x-rays and electromagnetic fields, with a spatial resolution of 50 nm. The magnetic domain images measured at the Co $L_3$ edge showed the evolution of the magnetic domain structures from maze-like form to the bubble-like form as the perpendicular magnetic field was applied. The asymmetric domain expansion of a 500 nm-scale bubble domain was also measured when the in-plane and perpendicular external magnetic field were applied simultaneously.

전기장이 강유전체 내의 균열킹크에 미치는 영향 (Effect of Electric Fields on Crack Kinking in Ferroelectrics)

  • 이종식;범현규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1206-1210
    • /
    • 2003
  • Effect of transverse electric field on crack kinking in ferroelectric ceramics subjected to purely electric loading is investigated. It is shown that the shape and size of the domain switching zone depends strongly on the direction of the applied electric field as well as the ratio of the transverse electric field to the coercive electric field. Under small-scale conditions, mode I and II stress intensity factors induced by ferroelectric domain switching are numerically obtained. The crack kinking in ferroelectrics is also discussed.

  • PDF

Time-domain analyses of the layered soil by the modified scaled boundary finite element method

  • Lu, Shan;Liu, Jun;Lin, Gao;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1055-1086
    • /
    • 2015
  • The dynamic response of two-dimensional unbounded domain on the rigid bedrock in the time domain is numerically obtained. It is realized by the modified scaled boundary finite element method (SBFEM) in which the original scaling center is replaced by a scaling line. The formulation bases on expanding dynamic stiffness by using the continued fraction approach. The solution converges rapidly over the whole time range along with the order of the continued fraction increases. In addition, the method is suitable for large scale systems. The numerical method is employed which is a combination of the time domain SBFEM for far field and the finite element method used for near field. By using the continued fraction solution and introducing auxiliary variables, the equation of motion of unbounded domain is built. Applying the spectral shifting technique, the virtual modes of motion equation are eliminated. Standard procedure in structural dynamic is directly applicable for time domain problem. Since the coefficient matrixes of equation are banded and symmetric, the equation can be solved efficiently by using the direct time domain integration method. Numerical examples demonstrate the increased robustness, accuracy and superiority of the proposed method. The suitability of proposed method for time domain simulations of complex systems is also demonstrated.

On the domain size for the steady-state CFD modelling of a tall building

  • Revuz, J.;Hargreaves, D.M.;Owen, J.S.
    • Wind and Structures
    • /
    • 제15권4호
    • /
    • pp.313-329
    • /
    • 2012
  • There have existed for a number of years good practice guidelines for the use of Computational Fluid Dynamics (CFD) in the field of wind engineering. As part of those guidelines, details are given for the size of flow domain that should be used around a building of height, H. For low-rise buildings, the domain sizes produced by following the guidelines are reasonable and produce results that are largely free from blockage effects. However, when high-rise or tall buildings are considered, the domain size based solely on the building height produces very large domains. A large domain, in most cases, leads to a large cell count, with many of the cells in the grid being used up in regions far from the building/wake region. This paper challenges this domain size guidance by looking at the effects of changing the domain size around a tall building. The RNG ${\kappa}-{\varepsilon}$ turbulence model is used in a series of steady-state solutions where the only parameter varied is the domain size, with the mesh resolution in the building/wake region left unchanged. Comparisons between the velocity fields in the near-field of the building and pressure coefficients on the building are used to inform the assessment. The findings of the work for this case suggest that a domain of approximately 10% the volume of that suggested by the existing guidelines could be used with a loss in accuracy of less than 10%.

재료내 기공결함에 의한 SH형 초음파 원거리 산란장의 신호특성에 대한 수치해석 (Numerical Analysis on the Signal Characteristics for Scattered Far-field of Ultrasonic SH-Wave by the Internal Cavity)

  • 이준현;이서일;박윤원
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.163-172
    • /
    • 2000
  • In this study, the scattered far-field due to a cavity embedded in infinite media subjected to the incident SH-wave was calculated by the boundary element method. The effects of cavity shape and distance between internal cavity and internal point in infinite media were considered. The scattered far-field of the frequency domain was transformed into the signal of the time domain by using the Inverse Fast Fourier Transform(IFFT). It was found that the amplitude of scattered signal in time domain decreased with the increase of the distance between the detecting points of ultrasonic scattered field and the center of internal cavity in media. In addition, the time delay was clearly found in time domain waveform as the distance between the detecting points of ultrasonic scattered field and the center of internal cavity was gradually increased.

적층형 세라믹 압전 액추에이터의 전계강도와 압축응력에 따른 변위특성 해석 (Electric Field Strength and Compressive Stress Effects on the Displacement of Multilayered Ceramic Actuators)

  • 송재성;정순종;김인성;민복기
    • 한국전기전자재료학회논문지
    • /
    • 제18권3호
    • /
    • pp.248-252
    • /
    • 2005
  • The effects of electric field strength and mechanical compressive stress on the displacement of multilayered ceramic actuator, stacked alternatively 0.2 (PbM $n_{1}$3/N $b_{2}$3/ $O_3$)-0.8(PbZ $r_{0.475}$ $Ti_{0.525}$ $O_3$) ceramic thin films and 70Ag-30Pd electrodes were investigated. Because the actuators were designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. so the polarization and strain were affected by the amount of 180$^{\circ}$domain, electric field strength and mechanical compressive stress. Consequently, the change of polarization, displacement with respect to field strength, and mechanical compressive stress were likely to be caused by readiness of the domain wall movement around the ceramic-electrode interfaces.ces.

Bitter Method를 이용한 다결정 MnZn 페라이트의 자구 구조 관찰 (A Study of the Domain Structure of Polycrystalline MnZn Ferrites)

  • 안성진;김창경;변태영;홍국선
    • 한국자기학회지
    • /
    • 제10권3호
    • /
    • pp.143-148
    • /
    • 2000
  • 일반적인 세라믹 제조방법으로 MnZn 페라이트를 만든 후 Bitter method를 이용하여 자구 구조를 관찰하였다. 페라이트 표면의 자구 구조는 stripe한 자구 구조 형태였으며 자장을 가하였을 때 초기에는 자벽 이동에 의한 자화를 관찰할 수 있었으며 자장을 계속 가함에 따라 (90∼120 Oe)에서 자벽의 불규칙한 이동 현상 또는 자구 회전을 관찰할 수 있었다.

  • PDF

Domain Wall Motions in a Near-Morphotropic PZT during a Stepwise Poling Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.484-488
    • /
    • 2017
  • In the present study, domain evolution processes of a near-morphotropic PZT ceramic during poling was studied using vertical piezoresponse force microscopy (PFM). To perform macroscopic poling in bulk polycrystalline PZT, poling was carried out in a stepwise fashion, and PFM scan was performed after unloading the electric field. To identify the crystallographic orientation and planes for the observed non-$180^{\circ}$ domain walls in the PFM images, compatibility theory and electron backscatter diffraction (EBSD) were used in conjunction with PFM. Accurate registration between PFM and the EBSD image quality map was carried out by mapping several grains on the sample surface. A herringbone-like domain pattern consisting of two sets of lamellae was observed; this structure evolved into a single set of lamellae during the stepwise poling process. The mechanism underlying the observed domain evolution process was interpreted as showing that the growth of lamellae is determined by the potential energy associated with polarization and an externally applied electric field.