• Title/Summary/Keyword: Field wall

Search Result 1,608, Processing Time 0.026 seconds

A Field Measurement Study on Heat Storage/Emission Characteristics of Tower Type Apartment Structures in Winter Season (겨울철 난방시 탑상형 아파트 구조체의 축·방열 특성에 대한 현장측정 연구)

  • Chang, Hyun-Jae;Cho, Keun-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.190-195
    • /
    • 2012
  • In this study, as a complementary study of the former study on indoor thermal environment in a tower type apartment house at tropical nights, a field measurement was conducted in winter season. Mainly, characteristics of heat storage and heat emission in apartment structures, in this study, were investigated. As results, indoor air temperature was changed in the range of $22.5^{\circ}C{\pm}1.0^{\circ}C$, and followed not the change of outdoor air temperature but the changed pattern of floor surface temperature. Wall surface temperature was unresponsive to the change of floor surface temperature compared with the change of indoor air temperature because wall structure was composed of concrete which has large heat capacity, and was changed in the range of $22.3^{\circ}C{\pm}0.6^{\circ}C$. Heat was stored continuously into the structures of wall and ceiling through the measurement term. and this means that a large heat capacity of the apartment structure acts as a disadvantage in winter season, too. As a total review of the study with the former study, a large heat capacity of the apartment structure acts against indoor thermal comfort in winter season as well as in summer season.

Effects of Surface Radiation on the Unsteady Natural Convection in a Rectangular Enclosure

  • Baek, Seung-Wook;Kim, Taig-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • Numerical solution of the full Navier-Stokes equation as well as the energy equation has been obtained for the unsteady natural convection in a rectangular enclosure. One side wall was maintained at very high temperature simulating fires. Especially the effect of surface radiation was taken into account. While the enclosed air was assumed to be transparent, the internal walls directly interacted one another through the surface radiation. Due to a significant temperature difference in the flow field, the equation of state was used instead of the Boussinesq approximation. It was found that the rapid heating of the adiabatic ceiling and floor by the incoming radiation from the hot wall made the evolution at thermo-fluid field highly unstable in the initial period. Therefore, the secondary cells brought about at the floor region greatly affected the heat transfer mechanism inside the enclosure. The heat transfer rate was augmented by the radiation, resulting in requiring less time for the flow to reach the steady state. At the steady state neglecting radiation two internal hydraulic jumps were clearly observed in upper/left as well as in lower/right comer. However, the hydraulic jump in the lower/right comer could not be observed for the case including radiation due to its high momentum flow over the bottom wall. Radiation resulted in a faster establishment of the steady state phenomena.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Measured structural response of a long irregular pit constructed using a top-down method

  • Yang, Sun;Yufei, Che;Zhenxue, Gu;Ruicai, Wang;Yawen, Fan
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.489-503
    • /
    • 2022
  • A 1257-m-long irregular deep foundation pit located in the central of Nanjing, China was constructed using the combined full-width and half-width top-down method. Based on the long-term field monitoring data, this study analyzed the evolution characteristics of the vertical movement of the columns, internal force of the struts, and axial force of the structural beam and slab. The relevance of the three mentioned above and their relationship with the excavation process, structural system, and geological conditions were also investigated. The results showed that the column uplift was within the range of 0.08% to 0.22% of the excavation depth, and the embedded depth ratio of the diaphragm wall and the bottom heave affected significantly on the column uplift. The differential settlement between the column and diaphragm wall remained unchanged after the base slab was cast. The final settlement of the diaphragm wall was twice the column uplift. The internal force of the struts did not varied monotonically but was related to numerous factors such as the excavation depth, number of struts, and environmental conditions. Additionally, the dynamic force and deformation of the columns, beams, and slabs were analyzed to investigate the inherent relationship and variation patterns of the responses of different parts of the structure.

Reconstruction of the orbital wall using superior orbital rim osteotomy in a patient with a superior orbital wall fracture

  • Heo, Jae Jin;Chong, Ji-Hun;Han, Jeong Joon;Jung, Seunggon;Kook, Min-Suk;Oh, Hee-Kyun;Park, Hong-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.42.1-42.5
    • /
    • 2018
  • Background: Fractures of the orbital wall are mainly caused by traffic accidents, assaults, and falls and generally occur in men aged between 20 and 40 years. Complications that may occur after an orbital fracture include diplopia and decreased visual acuity due to changes in orbital volume, ocular depression due to changes in orbital floor height, and exophthalmos. If surgery is delayed too long, tissue adhesion will occur, making it difficult to improve ophthalmologic symptoms. Thus, early diagnosis and treatment are important. Fractures of the superior orbital wall are often accompanied by skull fractures. Most of these patients are unable to perform an early ocular evaluation due to neurosurgery and treatment. These patients are more likely to show tissue adhesion, making it difficult to properly dissect the tissue for wall reconstruction during surgery. Case presentation: This report details a case of superior orbital wall reconstruction using superior orbital rim osteotomy in a patient with a superior orbital wall fracture involving severe tissue adhesion. Three months after reconstruction, there were no significant complications. Conclusion: In a patient with a superior orbital wall fracture, our procedure is helpful in securing the visual field and in delamination of the surrounding tissue.

An Experimental Study on Lateral Load Resistance of a Wall Structure Composed of Precast Concrete and H-Pile (H 파일과 프리캐스트 콘크리트로 형성된 벽체의 횡저항성능에 대한 실험적 연구)

  • Seo, Dong-Joo;Kang, Duk-Man;Lee, Hyun-Gee;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.9-17
    • /
    • 2020
  • The purpose of this study was to evaluate lateral load resistance of a wall structure composed of precast concrete wall and H-Pile. This type of structure can be used for noise barrier foundation or retaining wall. Mock-up specimens having actual size were designed and fabricated. The lateral design load is 54.6kN. The H-pile length for the test specimen is 1.5m for simulating behavior of actual wall structure has 6.5m H-pile in the field, which is determined from theoretical study. Lateral displacements and strains of wall and H-pile were monitored and cracking in precast concrete wall inspected during the test. Load and deformation capacity of test specimens was compared with design capacity. The comparisons demonstrated that this type of structures, precast concrete wall and H-pile, can resist enough to lateral design load.

Inverse Compensation of Hysteresis in Ferromagnetic Materials (강자성체의 히스테리시스 역 보상 모델)

  • 박영우;한광섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1470-1474
    • /
    • 2004
  • This paper addresses the development of inverse compensation techniques for a class of ferromagnetic transducers including magnetostrictive actuators. In this work, hysteresis is modeled through the domain wall theory originally proposed by Jiles and Atherton[1]. This model is based on the quantification of the energy required to translate domain walls pinned at inclusions in the material with the magnetization at a given field level specified through the solution of an ordinary differential equation. A complementary differential equation is then employed to compute the inverse which can be used to compensate for hysteresis and nonlinear dynamics in control design.

  • PDF

An Experimental Study on Development of Design-Concrete used Building Wall (건축외벽용 의장콘크리트 개발에 관한 실험적 연구)

  • 임현준;김종원;강태경;김우재;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.985-990
    • /
    • 2002
  • Contemporary architecture calls for a wide range of surface textures and treatments. A surface compatible with the architect's design may vary from a glass-smooth finish to one requiring special sculptured ornamentation. These surfaces require many different types of form sheathing and lining. The purpose of study development new design form and made elaborateness shape. Easy to used in field that architecture finish material not used expect effective reduce of working hours, personnel expenses, architecture finish material, cost. After this, building wall apply a variety shape in concrete surface.

  • PDF

Energy barrier of nanomagnet with perpendicular magnetic anisotropy

  • Song, Kyungmi;Lee, Kyung-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2014.05a
    • /
    • pp.120-121
    • /
    • 2014
  • We investigate the field-dependence of energy barrier for various cell diameters and two type of geometry through the NEB method. We find that the energy barrier can depend strongly on the cell size when the switching is governed by the domain wall motion. Moreover we also examine the cell size dependence of energy barrier for two type of cell geometry. In the presentation, we will discuss the effect of domain wall formation and more various cell size on the energy barrier in detail.

  • PDF

A Study on Building Wall with Glossing Design-Concrete (건축벽체용 광택문양콘크리트의 성능평가 연구)

  • 김종원;김재은;윤상혁;양동일;조상영;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.573-578
    • /
    • 2003
  • Contemporary architecture calls for a wide range of surface textures and treatments. A surface compatible with the architect's design may vary from a glass-smooth finish to one requiring special sculptured ornamentation. These surfaces require many different types of form sheathing and lining. The purpose of study development new design form and made elaborateness shape. Easy to used in field that architecture finish material not used expect effective reduce of working hours, personnel expenses, architecture finish material, cost. After this, building wall apply a variety shape in concrete surface

  • PDF