• Title/Summary/Keyword: Field wall

Search Result 1,608, Processing Time 0.023 seconds

Behavior of Reinforced Earth Retaining Wall for Permitting Reinforcement to Subside with Monitoring (현장계측을 통한 보강재 침하형 보강토 옹벽의 거동특성)

  • Chung, Jin-Hyuck;Oh, Jong-Keun;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.5-15
    • /
    • 2009
  • The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block. However, this system defect may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall. Hence, the new connector system which was able to allow the settlement of reinforcement was developed in this study and a test was carried out in the study area which is divided into the conventional reinforced earth retaining wall and reinforced Earth Retaining Wall driving the settlement. As the results of field monitoring in situ, the ratio of tensile force calculated at maximum value on contiguous portion of front block showed that the settlement type decreased the stress concentration near the face of front block greater than the conventional type.

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

Development of wall-thinning evaluation procedure for nuclear power plant piping - Part 2: Local wall-thinning estimation method

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2119-2129
    • /
    • 2020
  • Flow-accelerated corrosion (FAC), liquid droplet impingement erosion (LDIE), cavitation and flashing can cause continuous wall-thinning in nuclear secondary pipes. In order to prevent pipe rupture events resulting from the wall-thinning, most NPPs (nuclear power plants) implement their management programs, which include periodic thickness inspection using UT (ultrasonic test). Meanwhile, it is well known in field experiences that the thickness measurement errors (or deviations) are often comparable with the amount of thickness reduction. Because of these errors, it is difficult to estimate wall-thinning exactly whether the significant thinning has occurred in the inspected components or not. In the previous study, the authors presented an approximate estimation procedure as the first step for thickness measurement deviations at each inspected component and the statistical & quantitative characteristics of the measurement deviations using plant experience data. In this study, statistical significance was quantified for the current methods used for wall-thinning determination. Also, the authors proposed new estimation procedures for determining local wall-thinning to overcome the weakness of the current methods, in which the proposed procedure is based on analysis of variance (ANOVA) method using subgrouping of measured thinning values at all measurement grids. The new procedures were also quantified for their statistical significance. As the results, it is confirmed that the new methods have better estimation confidence than the methods having used until now.

Study on a seismic slit shear wall with cyclic experiment and macro-model analysis

  • Jiang, Huanjun;Lu, Xilin;Kwan, A.K.H.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.371-390
    • /
    • 2003
  • The concept of the seismic slit shear wall was proposed in the early 1990's. A series of experimental and theoretic studies on the wall with reinforced concrete short connecting beams cast in the slit were carried out. In this paper another type of slit shear wall is studied. It is one with vertical slit purposely cast within the wall, and the rubber belt penetrated by a part of web shear reinforcement as seismic energy-dissipation device is filled in the slit. Firstly, an experiment under cyclic loading was carried out on two shear wall models, one slit and the other solid. The failure mechanism and energy-dissipation capacity are compared between the two different models, which testifies the seismic performance of the slit wall improved significantly. Secondly, for engineering practice purpose, a macroscopic analytical model is developed to predict the nonlinear behavior of the slit shear wall under cyclic loading. The mechanical properties of each constituent elements of this model are based on the actual behavior of the materials. Furthermore, the effects of both the axial force and bending moment on the shear behavior are taken into account with the aid of the modified compression-field theory. The numerical results are verified to be in close agreement with the experimental measurements.

Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm (전교통동맥류 내부 유동 전산해석을 통한 낮은 벽면 전단 응력 영역 발달 분석)

  • Guk, Yoonhyeok;Kwon, Taeho;Moon, Seongdeuk;Kim, Dongmin;Hwang, Jinyul;Bae, Youngoh
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.45-54
    • /
    • 2022
  • We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.

Analysis of the Indoor Environmental Characteristics of Educational Facilities (Case Study of Thermal and Acoustical Environment of Elementary School by Field Measurement) (교육시설의 실내환경 특성 분석에 관한 연구 (초등학교의 열 및 음환경 실측조사에 의한 사례연구))

  • Cho, Min-Kwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.59-65
    • /
    • 2007
  • This study is to propose the basic data for deciding remodeling of wornout educational facilities. In order of it, the indoor environmental standard, the actual conditions of thermal environment and sound insulation of walls were examined through field measurement in the subjected open elementary school(J school) and modernization model of elementary school(Y school) which they are located in Seoul. As the result, standard for indoor environmental factors of educational facilities which is established by Ministry of Education is not subdivided into indoor environmental performances considering usages and characteristics of classrooms for comfortable indoor environment. The vertical temperature difference in general classroom and in open classroom showed to be $11.2^{\circ}C$ and $12.1^{\circ}C$ respectively, while indoor temperature of special classroon was, on the whole, higher than that of any other classroom due to its specific heat flux of wall materials. The sound insulation performance of the masonry brick wall of classroom satisfied the minimum standard of AIJ, Architectural Institute of Japan, in the open elementary school and the modernization model of elementary school. That is to say, the movable partition wall between the classroom and the corridor disturbed students in their class in the open school.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

Geosynthetic-Reinforced Segmental Retaining Walls in Tiered Arrangement - Case Study and Field Trial Wall Instrumentation (다단식 보강토 옹벽의 설계 - 사례연구 및 시험시공)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 2004
  • This paper presents the results of stability analyses on soil-reinforced segmental retaining walls in a tiered arrangement. Four different walls were examined to investigate the appropriateness of their designs within the context of the current design guidelines based on limit equilibrium. Slope stability analysis against the compound failure mode, which is frequently ignored during design, was also performed based on the method recommended by FHWA design guidelines. Also presented are the results of instrumentation on a full-scale field trial wall constructed as part of this study. The implications of the findings from this study are discussed.

  • PDF

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.

Field Performance of Reinforced Earth Wall with Steel Framed-Facing (강재틀 보강토옹벽에 대한 현장 시험시공)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Kim, Ju-Hyong;Seo, Chang-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.39-48
    • /
    • 2007
  • This paper introduces a recently developed reinforced earth wall system with steel framed-facing. The new system incorporates a steel-framed facing that might be assembled on-site and steel strip or geogrid type reinforcements for backfill area. In order to enhance scenery view design of the wall construction, dual-structured facing is proposed in which room for planting space locates in the front of facing. A reinforced earth walls using the proposed system was constructed to verify constructability of the proposed system and facing movement and tensile characteristics of reinforcement were measured to understand the mechanical behavior.

  • PDF