• Title/Summary/Keyword: Field strength

Search Result 3,472, Processing Time 0.03 seconds

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

A Study on the Prediction of Welding Flaw Using Neural Network (인공 신경망을 이용한 실시간 용접품질 예측에 관한 연구)

  • Cho, Jae Hyung;Ko, Sang Hyun
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.217-223
    • /
    • 2019
  • A study in predicting defects of spot welding in real time in automotive field is essential for cost reduction and high quality production. Welding quality is determined by shear strength and the size of the nugget, and results depend on different independent variables. In order to develop the real-time prediction system, multiple regression analyses were conducted and the two dependent variables were obtained with sufficient statistical results with three independent variables, however, the quality prediction by the regression formula could not ensure accuracy. In this study, a multi-layer neural network circuit was constructed. The neural network by 10 dynamic resistance variables was constructed with three hidden layers to obtain execution functions and weighting matrix. In this case, the neural network was established with three independent variables based on regression analysis, as there could be difficulties in real-time control due to too many input variables. As a result, all test data were divided into poor, partial, and modalities. Therefore, a real-time welding quality determination system by three independent variables obtained by multiple regression analysis was completed.

Machine Learning based Firm Value Prediction Model: using Online Firm Reviews (머신러닝 기반의 기업가치 예측 모형: 온라인 기업리뷰를 활용하여)

  • Lee, Hanjun;Shin, Dongwon;Kim, Hee-Eun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.79-86
    • /
    • 2021
  • As the usefulness of big data analysis has been drawing attention, many studies in the business research area begin to use big data to predict firm performance. Previous studies mainly rely on data outside of the firm through news articles and social media platforms. The voices within the firm in the form of employee satisfaction or evaluation of the strength and weakness of the firm can potentially affect firm value. However, there is insufficient evidence that online employee reviews are valid to predict firm value because the data is relatively difficult to obtain. To fill this gap, from 2014 to 2019, we employed 97,216 reviews collected by JobPlanet, an online firm review website in Korea, and developed a machine learning-based predictive model. Among the proposed models, the LSTM-based model showed the highest accuracy at 73.2%, and the MAE showed the lowest error at 0.359. We expect that this study can be a useful case in the field of firm value prediction on domestic companies.

Evaluation of artifacts around the breast expander according to magnetic field strength (자장의 세기에 따른 유방 확장기 주위의 인공물 평가)

  • Jung, Dong- Il;Kim, Jae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1144-1149
    • /
    • 2020
  • The magnetic valve of the breast tissue expander generates imaging artifacts during MRI examination, so MRI examination is limited. To evaluate the effect of imaging artifacts on the diagnosis area for patients with breast tissue expander who need MRI examination. Imaging artifacts were measured using self-made phantoms and actual clinical conditions. Imaging artifacts were measured differently depending on the environment of 1.5 Tesla and 3.0 Tesla, and the effects of imaging artifacts were less in the C-spine and L-spine tests. If MRI due to breast cancer metastasis is absolutely necessary, head & neck examination and L-spine can be examined mainly at 1.5 Tesla, but some sequences may cause distortion due to image artifacts. In terms of safety, MRI scans of patients with breast tissue expanders can be performed conditionally at 1.5T, avoiding 3.0T.

Shallow ground treatment by a combined air booster and straight-line vacuum preloading method: A case study

  • Feng, Shuangxi;Lei, Huayang;Ding, Xiaodong;Zheng, Gang;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-141
    • /
    • 2021
  • The vacuum preloading method has been used in many countries for soil improvement and land reclamation. However, the treatment time is long and the improvement effect is poor for the straight-line vacuum preloading method. To alleviate such problems, a novel combined air booster and straight-line vacuum preloading method for shallow ground treatment is proposed in this study. Two types of traditional vacuum preloading and combined air booster and straight-line vacuum preloading tests were conducted and monitored in the field. In both tests, the depth of prefabricated vertical drains (PVDs) is 4.5m, the distance between PVDs is 0.8m, and the vacuum preloading time is 60 days. The prominent difference between the two methods is when the preloading time is 45 days, the injection pressure of 250 kPa is adopted for combined air booster and straight-line vacuum preloading test to inject air into the ground. Based on the monitoring data, this paper systematically studied the mechanical parameters, hydraulic conductivity, pore water pressure, settlement and subsoil bearing capacity, as determined by the vane shear strength, to demonstrate that the air-pressurizing system can improve the consolidation. The consolidation time decreased by 15 days, the pore water pressure decreased to 60.49%, and the settlement and vane shear strengths increased by 45.31% and 6.29%, respectively, at the surface. These results demonstrate the validity of the combined air booster and straight-line vacuum preloading method. Compared with the traditional vacuum preloading, the combined air booster and straight-line vacuum preloading method has better reinforcement effect. In addition, an estimation method for evaluating the average degree of consolidation and an empirical formula for evaluating the subsoil bearing capacity are proposed to assist in engineering decision making.

The Correlation Between RMR and Deformation Modulus by Rock masses using Pressuremeter (공내재하시험을 이용한 암종별 변형계수와 RMR의 상관성)

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, correlation between measured deformation modulus using pressuremeter and RMR value conducted in 10 sites is analyzed, and applicability of the conventional empirical formulas to the rock masses in Korea are analyzed, It is found that if RMR is below 40, the correlation between deformation modulus and RMR accords Kim Gyo-won's formula and Aydan, Serafim and Pereira's one well, but if the RMR exceeds 40, the correlation was lower than those from the formula. Such results may be attribute to the fact that during classification of RMR, scores are weighed relatively more in joint conditions and apertures than such highly correlational items as uniaxial compression strength or RQD, and RMR would not be evaluated qualitatively due to different weathering degrees and rock mass types as well as engineers' personal errors. Sandstone among sedimentary rocks are quite well accord with suggested equation, but correlation of other rocks are due to large variance. In this study, correlation expressions of various rocks are proposed as the function of exponential based on the field test data.

A proposal and evaluation of a revised GIN method (수정 GIN 기법의 제안 및 검증)

  • Sagong, Myung;Park, Youngjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.151-165
    • /
    • 2021
  • Grouting, which is applied for the increase of ground strength and the decrease of permeability, is complex process because of several reasons, so the process needs to be elaborated. Injection process in consideration of ground condition and optimization of grouting sequence is essential. In this study, GIN (Grouting Intensity Number), multiple of injected grout volume and pressure, is revised to consider injection pressure reduction and joint opening during grouting process. A revised GIN process is evaluated through a field test. A revised GIN, considering ground condition, injection pressure, follows GIN envelope and produces rational grouting process. The result of a revised GIN reduces permeability of the ground in the order of 10-1~10-2 cm/sec.

Analyzing the level of resilience by gender in computational thinking classes (컴퓨팅 사고 강좌에서 성별에 따른 회복탄력성 수준 분석)

  • Kim, Semin;Choi, Sookyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.252-258
    • /
    • 2021
  • Software subjects such as programming practice and physical computing may have differences between men and women, and there may be individual differences in resilience due to errors and debugging. Therefore, in this study, we analyze gender differences in computational thinking classes by using a resilience testing tool. The results of this study showed that the two groups were homogeneous, and the male group did not show significant changes in resilience, but the female group showed significant increases in resilience. This study confirmed the possibility of reducing the gender gap of learners by allowing a group of female students who did not show strength in traditional software education to become more motivated and interested in the information and communication field through appropriate learning content and learning strategies in computational thinking classes.

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

Study of Stabilization Process of PAN Precursor and its Characteristics Change by Plasma Treatment (플라즈마 처리 방법을 이용한 PAN 전구체 특성 변화 연구)

  • Kang, Hyo-Kyoung;Kim, Jung-Yeon;Kim, Hak-Yong;Choi, Yeong-Og
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Commercialized carbon fiber obtained from polyacrylonitrile(PAN) precursor is subjected to oxidation stabilization at 180 to 300℃ in air atmosphere and carbonization process at 1600℃ or lower in inert gas atmosphere. Both of these processes use a lot of time and high energy, but are essential and important for producing high-performance carbon fibers. Therefore, in recent years, an alternative stabilization technology by being assisted with various other energy sources such as plasma, electron beam and microwave which can shorten the process time and lower energy consumption has been studied. In this study, the PAN precursor was stabilized by using plasma treatment and heat treatment continuously. The morphology, structural changes, thermal and physical properties were analyzed using Field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), Fourier transform infrared(FT-IR), Thermogravimetric analysis(TGA) and Favimat.