• Title/Summary/Keyword: Field strength

Search Result 3,472, Processing Time 0.03 seconds

Role of ingredients for high strength and high performance concrete - A review

  • Parande, A.K.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.151-162
    • /
    • 2013
  • The performance characteristics of high-strength and high-performance concrete are discussed in this review. Recent developments in the field of high-performance concrete marked a giant step forward in high-tech construction materials with enhanced durability, high compressive strength and high modulus of elasticity particularly for industrial applications. There is a growing awareness that specifications requiring high compressive strength make sense only when there are specific strength design advantages. HPC today employs blended cements that include silica fume, fly ash and ground granulated blast-furnace slag. In typical formulations, these cementitious materials can exceed 25% of the total cement by weight. Silica fume contributes to strength and durability; and fly ash and slag cement to better finish, decreased permeability, and increased resistance to chemical attack. The influences of various mineral admixtures such as fly ash, silica fume, micro silica, slag etc. on the performance of high-strength concrete are discussed.

The Application of High Strength Concrete on Woo-Sung Character 199 Project (우성 캐릭터 199에 고강도 콘크리트 적용에 관한 연구)

  • 신성우;안종문;김원섭;김세현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.357-362
    • /
    • 1996
  • The objective of this study is to investigate material properties and quality control of cast-in-place high strength concrete. High strength concrete with a design strength of 420 kgf/$\textrm{cm}^2$ is successfully produced at a ready-mixed concrete plant, and placed at a tall building. Many laboratory and field tests are carried out for the successful construction of the reinforced high strength concrete building. As the results of this study, the average actual 28-day compressive strength is 513 kgf/$\textrm{cm}^2$ and the coefficient of variation is 6.8%. The placing speed is comparable to normal strength concrete, however, the pump pressure is higher than that of normal strength concrete. To prevent cracks of massive and long concrete members, the control of hydration heat and shrinkage is very important.

  • PDF

An Experimental Study on Workability for Practical Use of High Workable and Normal Strength Concrete (고슬럼프 보통강도 콘크리트의 실용화를 위한 시공특성에 관한 실험적 연구)

  • Jung, Yang-Hee;Kim, Yong-Ro;Lee, Do-Bum;Jang, Sun-Ken
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • The purpose of this study is to suggest a reference data for the development of high workable and normal strength concrete using Polycarboxylate superplasticizer and granulated blast furnace slag as concrete admixtures. So in this study, it is quantitatively evaluated the workability, compressive strength, the heat of hydration and dry shrinkage of high workable concrete on normal compressive strength($21{\sim}27MPa$) for the practical use in construction field. As a result of this study, it is appeared that the performance of high workable and normal strength concrete is superior than that of ready-mixed concrete of the same strength through the B/P tests in the plants.

  • PDF

Bearing Capacity Analysis of High Strength Steel Pipe Pile with an Extended Head (선단확장형 고강도강관 매입말뚝 지지력 분석)

  • Ko, Jun-Young;Jeong, Sang-Seom;Lee, Sung-June;Lee, Jin-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.559-568
    • /
    • 2010
  • Recently, because of mega foundations and grand bridges, the foundations require significant bearing capacity. In this study, bearing capacity of high strength steel pipe pile with an extended head (HSP) is calculated on the basis of domestic criteria and Japanese criteria. And bearing capacity of HSP is investigated based on 3 field tests. In comparison with the results of analysis and tests, it is shown that the field test results are bigger than analysis results. Therefore, it is proposed to estimate bearing capacity of HSP.

  • PDF

Analysis of Insulating Reliability in Epoxy Composites using Weibull Distribution Equation (와이블 분포식을 이용한 에폭시 복합체의 절연 신뢰도 분석)

  • Park, No-Bong;Lim, Jung-Kwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.813-816
    • /
    • 2003
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, according to Weibull distribution analysis, reducing breakdown probability of equipment insulation lower than 0.1 % level requires the allowable field intensity values to be kept under 21.5 MV/cm.

  • PDF

Evaluation of Insulating Reliability in Epoxy Composites by DC Dielectric Breakdown Properties (DC 절연파괴 특성을 이용한 Epoxy 복합체의 절연 신뢰도 평가)

  • 임중관;박용필;김정호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.92-95
    • /
    • 2001
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 [Mv/cm].

  • PDF

An Experimental Study on the Fiber Reinforced Concrete for Field Application of press Concrete (누름콘크리트의 현장적용을 위한 섬유보강 콘크리트에 관한 연구)

  • Kim, Ho-Su;Park, Cho-Bum;Jo, Hyun-Tae;Gang, Yeon-Woo;Kim, Jeong-Sik;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.541-542
    • /
    • 2009
  • In this study, the properties of concrete with various fiber(cellulose, PP, PVA) such as slump, air content, compressive strength, tensile strength and bending strength were examined. In addition, field application of press concrete with disperse cellulose fiber in liquid were investigated.

  • PDF

Estimation of field application for the PHC pile backfill recycling In-site soil (현장 발생토를 재활용한 PHC파일 채움재의 현장 적용성 평가)

  • Choi, Hee-Bok;Noh, Chang-Suck;Han, Byung-Kwon;Lee, Hong-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.63-66
    • /
    • 2011
  • The aim of this study is to estimate the field applicability of PBFM to replace in-site soil with pile backfill used to replace the existing cement paste. As results, the flowability, segregation and bleeding, and bond strength of PBFM was a good performance than that of the existing cement paste. But the skin friction of pile by Pile Driving Analyzer (PDA) and compressive strength was slightly decreased than that of the existing cement paste. However, as pile backfill materials, and in terms of economics and environment, the applicability of PBFM is considered very effective.

  • PDF

Analysis of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties (절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 분석)

  • 최철호;박용필;임중관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.414-419
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of (idled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF

Behavior of Engineered Cementitious Composite(ECC) Flexural Members Based on Mix Proportions and Curing Conditions (고기능성 시멘트계 복합재료 배합비 및 양생조건에 따른 휨부재의 거동)

  • 경민수;김동완;배병원;전경숙;임윤묵;김장호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.361-366
    • /
    • 2003
  • Recently, construction materials have been guickly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-Mechanics based fiber concrete called Engineered Cement Composite (ECC) has been developed and studied extensively by many researchers in the field due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan and European countries have reached the point of being able to use ECC in actual constructions. But, due to the belated interest in the field, Korea is lagging behind the leading countries. ECC's ability to use its short fibers to bridge micro-cracks (50-80㎛ in width) allows great ductility and strength. ,In this study, ECC with superior material capacities are manufactured using domestic materials such as cement, silica sand, metal cellulose, etc. Using only domestic products, the optimal W/C ratio and mixing procedures are determined.

  • PDF