• Title/Summary/Keyword: Field soil

Search Result 5,031, Processing Time 0.044 seconds

Determining Soil Quality of Heavy Metal Contaminated Agricultural Field in Korea (중금속 오염 농경지 토양의 토양질 평가에 관한 연구)

  • Kim, Ju Hee;Chung, Doug Young;Oh, Se Jin;Kim, Rog Young;Yang, Jae E.;Park, Gwan In;Lee, Jin Soo;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1237-1241
    • /
    • 2012
  • Heavy metal pollution in agricultural field has been a critical issue in worldwide. For this reason, remediation technologies for heavy metal polluted soil are applied especially near at the abandoned metal mine. Soil quality analysis is also an important factor for proper management in heavy metal polluted agricultural field. In this study, scoring function was utilized to evaluate soil quality in heavy metal polluted agricultural field. Among other soil properties, bulk density, soil pH, EC, $NH_4$-N, $NO_3$-N, and cation exchange capacity (CEC) were determined for minimum data set (MDS) with principal component analysis. Result showed that both upland and paddy soil contaminated with heavy metal were not suitable for crop growth except scoring of soil pH for paddy soil and CEC for upland soil. This result might indicate that chemical stabilization technology with chemical amendment could be adapted for remediation method for heavy metal polluted agiclutural field not only for heavy metal immobilization but also enhancement of soil condition for crop growth.

Spatial Analyses of Soil Chemical Properties from a Remodeled Paddy Field as Affected by Wet Land Leveling

  • Jung, Ki-Yuol;Choi, Young-Dae;Lee, Sanghun;Chun, Hyen Chung;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.555-563
    • /
    • 2016
  • Uniformity and leveled distributions of soil chemicals across paddy fields are critical to manage optimal crop yields, reduce environmental risks and efficiently use water in rice cultivation. In this study, an investigation of spatial distributions on soil chemical properties was conducted to evaluate the effect of land leveling on mitigation of soil chemical property heterogeneity from a remodeled paddy field. The spatial variabilities of chemical properties were analyzed by geostatistical analyses; semivariograms and kriged simulations. The soil samples were taken from a 1 ha paddy field before and after land leveling with sufficient water. The study site was located at Bon-ri site of Dalseong and river sediments were dredged from Nakdong river basins. The sediments were buried into the paddy field after 50 cm of top soils at the paddy field were removed. The top soils were recovered after the sediments were piled up. In order to obtain the most accurate spatial field information, the soil samples were taken at every 5 m by 5 m grid point and total number of samples was 100 before and after land leveling with sufficient water. Soil pH increased from 6.59 to 6.85. Geostatistical analyses showed that chemical distributions had a high spatial dependence within a paddy field. The parameters of semivariogram analysis showed similar trends across the properties except pH comparing results from before and after land leveling. These properties had smaller "sill" values and greater "range" values after land leveling than ones from before land leveling. These results can be interpreted as land leveling induced more homogeneous distributions of soil chemical properties. The homogeneous distributions were confirmed by kriged simulations and distribution maps. As a conclusion, land leveling with sufficient water may induce better managements of fertilizer and water use in rice cultivation at disturbed paddy fields.

Change in Soil Properties after Planting Giant Miscanthus (거대억새 단지 조성에 따른 토양 특성 변화)

  • Kang, Ku;Hong, Seong-Gu;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.69-75
    • /
    • 2013
  • Miscanthus has received wide attention as an option for biomass production in Korea, recently. New strain of giant miscanthus has been developed and was planted in two large trial sites (184 ha) in the lower reaches of the Geum River. To evaluate the susceptibility of the giant miscanthus as an bioenergy crop for the future, we investigated the influence of the giant miscanthus on the soil properties. The particle size, CEC, pH, EC, T-N, T-P, heavy metal total concentration, and heavy metal fractions of soil samples collected from abandoned field, 1 year old giant miscanthus field (1st Year GM), and 2 year old giant miscanthus field (2nd Year GM) at different depths of 0~15, 15~30, and 30~45 cm in April and August were analyzed. Results showed that the CEC and pH of the soil of the giant miscanthus field were lower than those of the soil of abandoned field. The EC of 2nd GM was lower than that of abandoned field, indicating that the giant miscanthus may facilitate soil desalination process. The organic and sulfide fraction and residual fraction of heavy metals in the giant miscanthus field was higher than in abandoned field, due to the low pH of the giant miscanthus field and the excretion of phytosiderophores by rhizome of the giant miscanthus. This study showed that the giant miscanthus can influence on the soil properties and further study for long term is needed to elucidate the interaction between the soil and the giant miscanthus.

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

Studies on the Distribution of Fungal and Fusarium spp. Propagules in Ginseng Field Soil (인삼포(人參圃) 토양(土壤)의 진균(眞菌) 및 Fusarium속 분포(分布)에 관한 연구)

  • Shin, Hyun-Sung;Lee, Hyung-Hoan;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.14 no.2
    • /
    • pp.109-119
    • /
    • 1986
  • The correlations between environmental influences on microorganisms in soil and its effects on disease development in ginseng field were studied to obtain some useful data for increasing ginseng production and effective preventive measures against the root rot caused by soil-borne pathogens. The diseased replanted ginseng fields were selected as the diseased field and the healthy plot in first planted field selected as control in three major Korean ginseng producing areas such as Kumsan, Goesan and Poonggi. The physicochemical characteristics of the soil were analyzed and microorganisms susceptible for root rot of ginseng, such as Fusarium spp. and general fungi were investigated for their population density in various soil conditions. Correlations between soil microbial populations and environmental factors were investigated. The numbers of Fusarium spp. propagules were abundant in fall in both soil conditions. The numbers of Fusarium spp. were 1.9 to 2.6 times higher in replanted field than first planted field except Goesan area. Relative ratio of Fusarium spp. to total fungi propagules in replanted field was 1.6 times higher in replanted field than first planted field indicating higher numbers of Fusarium spp. distributed in replanted field of soil. The numbers of propagules of total fungi were increased in June and July and there was no sensitive variation according to the temperature. There was no significant difference in vertical distributions of total fungi according to soil depth, while the total fungi were abundant in the surface layer and $10{\sim}15\;cm$ layer. The contents of organic matter and phosphate in healthy field were somewhat high, and phosphate/organic matter ratio and Mg contents were high in diseased field. All of the soils showed a weak acidic pH of 4.5 to 5.7. Soil moisture contents were increased during winter season, but did not show any significant changes during the growing periods, showing 24.6% in healthy field and 19.5% in diseased field respectively. Soil temperature was the highest in July and August and the lowest in January and February.

  • PDF

Spatial Variability of Soil Moisture and Irrigation Scheduling for Upland Farming (노지 작물의 적정 관개계획을 위한 토양수분의 공간변이성 분석)

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.81-90
    • /
    • 2016
  • Due to droughts and water shortages causing severe damage to crops and other vegetations, much attention has been given to efficient irrigation for upland farming. However, little information has been known to measure soil moisture levels in a field scale and apply their spatial variability for proper irrigation scheduling. This study aimed to characterize the spatial variability and temporal stability of soil water contents at depths of 10 cm, 20 cm and 30 cm on flat (loamy soil) and hill-slope fields (silt-loamy soil). Field monitoring of soil moisture contents was used for variogram analysis using GS+ software. Kriging produced from the structural parameters of variogram was applied for the means of spatial prediction. The overall results showed that the surface soil moisture presented a strong spatial dependence at the sampling time and space in the field scale. The coefficient variation (CV) of soil moisture was within 7.0~31.3 % in a flat field and 8.3~39.4 % in a hill-slope field, which was noticeable in the dry season rather than the rainy season. The drought assessment analysis showed that only one day (Dec. 21st) was determined as dry (20.4 % and 24.5 % for flat and hill-slope fields, respectively). In contrary to a hill-slope field where the full irrigation was necessary, the centralized irrigation scheme was appeared to be more effective for a flat field based on the spatial variability of soil moisture contents. The findings of this study clearly showed that the geostatistical analysis of soil moisture contents greatly contributes to proper irrigation scheduling for water-efficient irrigation with maximal crop productivity and environmental benefits.

Improved Method of Suitability Classification for Sesame (Sesamum indicum L.) Cultivation in Paddy Field Soils

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.520-529
    • /
    • 2017
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, Korean government pursuits cultivating upland crops in paddy fields to reduce overproduced rice in Korea. In order to succeed this policy, it is critical to set criteria suitability classification for upland crops cultivating in paddy field soils. The objective of this study was developing guideline of suitability classification for sesame cultivation in paddy field soils. Yields of sesame cultivated in paddy field soils and soil properties were investigated at 40 locations at nationwide scale. Soil properties such as topography, soil texture, soil moisture contents, slope, and drainage level were investigated. The guideline of suitability classification for sesame was determined by multi-regression method. As a result, sesame yields had the greatest correlation with topography, soil moisture content, and slope. Since sesame is sensitive to excessive soil moisture content, paddy fields with well drained, slope of 7-15% and mountain foot or hill were best suit for cultivating sesame. Sesame yields were greater with less soil moisture contents. Based on these results, area of best suitable paddy field land for sesame was 161,400 ha, suitable land was 62,600 ha, possible land was 331,600 ha, and low productive land was 1,075,500 ha. Compared to existing suitability classification, the new guideline of classification recommended smaller area of best or suitable areas to cultivate sesame. This result may suggest that sesame cultivation in paddy field can be very susceptible to soil moisture contents.

Integration of GIS-based RUSLE model and SPOT 5 Image to analyze the main source region of soil erosion

  • LEE Geun-Sang;PARK Jin-Hyeog;HWANG Eui-Ho;CHAE Hyo-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.357-360
    • /
    • 2005
  • Soil loss is widely recognized as a threat to farm livelihoods and ecosystem integrity worldwide. Soil loss prediction models can help address long-range land management planning under natural and agricultural conditions. Even though it is hard to find a model that considers all forms of erosion, some models were developed specifically to aid conservation planners in identifying areas where introducing soil conservation measures will have the most impact on reducing soil loss. Revised Universal Soil Loss Equation (RUSLE) computes the average annual erosion expected on hillslopes by multiplying several factors together: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practice (P). The value of these factors is determined from field and laboratory experiments. This study calculated soil erosion using GIS-based RUSLE model in Imha basin and examined soil erosion source area using SPOT 5 high-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area applying field survey method in common areas (dry field & orchard area) that are difficult to confirm soil erosion source area using satellite image.

  • PDF

Impact of Herbicide Oxadiazon on Microbial Activity and Nitrogen Dynamics in Soil Environment

  • Rahman, Md. Mokhlesur;Song, Kyung-Sik;Rhee, In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.187-192
    • /
    • 2005
  • Influence of herbicide oxadiazon on soil microbial activity and nitrogen dynamics was evaluated. Soil samples were treated with oxadiazon at field and tenfold field rates and incubated. Organic amendment was added as an additional substrate for soil microorganisms. Tenfold field rate oxadiazon stimulated substrate-induced respiration (SIR) and dehydrogenase activity (DHA) in amended soil as compared to unamended soil and control treatment. Soil urease activity was not affected by oxadiazon treatment. In both amended and unamended soils, treatment of the herbicide at higher rate had not significant influence on $NH_4$-N and $NO_3$-N concentrations. Higher dose of oxadiazon was degraded in both soils, but dissipation rate in amended soil was higher than unamended soil, with half-lives ($t_{1/2}$) of 23.1 and 138.6 days, respectively. Recommended field rate did not affect microbial activity and nitrogen dynamics in soil ecosystem. Results showed influence of oxadiazon on cycling processes of nitrogen in soil was not significant however its effect on microbial activity was a tendency depending on addition of organic amendment to soil.

Effects of Straw Mulching on Soil Physicochemical Properties in Saemangeum Reclaimed Land

  • Ryu, Jin-Hee;Kang, Jong-Gook;Kim, Young-Joo;Oh, Yang-Yeol;Lee, Su-Hwan;Kim, Sun;Hong, Ha-cheol;Kim, Young-doo;Kim, Sun-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.12-16
    • /
    • 2016
  • To identify the effects of straw mulching on soil physicochemical properties in reclaimed saline soil, field experiment was conducted for 3 years (2010~2012) in Saemangeum reclaimed land. Soil series of the experimental field was Munpo and soil texture was fine sandy loam. The experiment was conducted at a field with EC of $2.4dS\;m^{-1}$ (field I) and the other field with EC of $5.6dS\;m^{-1}$ (field II). Each experimental field was treated with rye straw incorporation, mulching with rye straw and control. In 2010 rye straw produced from other field was used for the experiment and in 2011~2012 rye straw cultivated at the same experimental field was used. After rye straw application, soybean was cultivated. After 3 years field experiment, by rye straw incorporation, soil salinity decreased from $2.4dS\;m^{-1}$ to $0.6dS\;m^{-1}$ at field I but increased from $5.6dS\;m^{-1}$ to $7.6dS\;m^{-1}$ at field II. By mulching with rye straw soil salinity decreased from $2.4dS\;m^{-1}$ to $0.5dS\;m^{-1}$ at field I and also decreased from $5.6dS\;m^{-1}$ to $0.5dS\;m^{-1}$ at field II. By rye straw incorporation and mulching soil organic matter increased from $2g\;kg^{-1}$ to $4g\;kg^{-1}$. At field I yields of soybean were similar between rye straw incorporation and mulching but at field II yield of soybean increased apparently by mulching with rye straw compared to rye straw incorporation and control.