• Title/Summary/Keyword: Field simulation

Search Result 5,641, Processing Time 0.029 seconds

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis (수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.468-479
    • /
    • 2019
  • It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

Monte Carlo Simulation of a Varian 21EX Clinac 6 MV Photon Beam Characteristics Using GATE6 (GATE6를 이용한 Varian 21EX Clinac 선형가속기의 6 MV X-선 특성모사)

  • An, Jung-Su;Lee, Chang-Lae;Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.571-575
    • /
    • 2016
  • Monte Carlo simulations are widely used as the most accurate technique for dose calculation in radiation therapy. In this paper, the GATE6(Geant4 Application for Tomographic Emission ver.6) code was employed to calculate the dosimetric performance of the photon beams from a linear accelerator(LINAC). The treatment head of a Varian 21EX Clinac was modeled including the major geometric structures within the beam path such as a target, a primary collimator, a flattening filter, a ion chamber, and jaws. The 6 MV photon spectra were characterized in a standard $10{\times}10cm^2$ field at 100 cm source-to-surface distance(SSD) and subsequent dose estimations were made in a water phantom. The measurements of percentage depth dose and dose profiles were performed with 3D water phantom and the simulated data was compared to measured reference data. The simulated results agreed very well with the measured data. It has been found that the GATE6 code is an effective tool for dose optimization in radiotherapy applications.

Study of Effectiveness of Signal Preemption Strategy Depending on Train Speed at Intersections Near Highway-Railroad Grade Crossings (철도건널목 인근 신호교차로에서의 우선신호 전략 비교분석(열차속도를 중심으로))

  • Jo, Han-Seon;Kim, Won-Ho;O, Ju-Taek;Sim, Jae-Ik
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.17-26
    • /
    • 2007
  • Because the prime objective of the current preemption methods at signalized intersections near highway-railroad grade crossings(IHRGCs) is to clear the crossing, secondary objectives such as safe pedestrian crossing time and minimized delay often are given less consideration or are ignored completely during the preemption. Under certain circumstances state-of-the-practice traffic signal preemption strategies may cause serious pedestrian safety and efficiency problems at IHRGCs. An improved transition preemption strategy(ITPS) that is specifically designed to improve intersection performance while maintaining or improving the current level of safety was developed by Cho and Rilett. Even if the new transition preemption strategy improved both the safety and efficiency of IHRGCs, the performance of the strategy is affected by train speed. Understanding the impact of this factor is essential in order to implement ITPS. In this paper, the effects of train speed were analyzed using a VISSIM simulation model which was calibrated to field conditions. It was concluded that the delay is affected more by train speed than the transitional preemption strategy and the safety of the intersection is not affected by train speed once an advanced preemption warning time(APWT) is equal to or greater than 90 seconds.

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.

A Study on the Improving Speech Intelligibility of Emergency Broadcast Equipment in the Apartments (공동주택 내 비상방송설비의 음성명료도 실태 분석 및 재실자 인지성 개선방안 연구)

  • Oh, So-Young;Cho, Hyun-Min;Lee, Young-Ju;Lee, Min-Joo;Yoon, Myung-Oh
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.60-68
    • /
    • 2018
  • Due to the complicated plan structure of the apartment units and the improved room-to-room sound insulation performance, it is difficult to communicate and recognize the fire situation by emergency broadcast equipment. In this study, speech intelligibility was measured and analyzed for three types of apartment unit by emergency broadcast equipment on various measurement points. Simulations were also conducted to improve the speech intelligibility. As a result of field measurements 72, 84, and 101 Type were not satisfied with NFSC standard of 90 dBA at the point of 1 m distance from source. In addition, it was evaluated that 75 dBA and CIS 0.7 of NFPA standard was not satisfied at all measurement points except for the 72 Type at living room point with door opened condition. Based on the door opened condition of the bedroom, it satisfied the NFPA of 75 dBA and CIS 0.7 in each bedroom when more than 90 dBA was satisfied at the 1 m separation point provided in NFSC standard.

A Numerical Model of Three-dimensional Soil Water Distribution for Drip Irrigation Management under Cropped Conditions (작물 흡수를 고려한 3차원 토양수분 분포 모델 개발을 통한 최적 점적 관개 연구)

  • Kwon, Jae-Phil;Kim, Seung-Hyun;Yoo, Sun-Ho;Ro, Hee-Myong
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2000
  • A numerical model of three-dimensional soil water distribution for drip irrigation management under cropped conditions was developed using Richards equation in Cartesian coordinates. The model accounts for both seasonal and diurnal changes in evaporation and transpiration, and the growth of plant root and the shape of root zone. Solutions were numerically approximated using the Crank-Nicolson implicit finite difference technique on the block-centered grid system and the Gauss-Seidel elimination in tandem. The model was tested under several conditions to allow the flow rates and configurations of drip emitters vary. In general, simulation results agreed well with experimental results and were as follows. The velocity of soil-water flow decreased drastically with distance from the drip source, and the rate of expansion of the wetted zone decreased rapidly during irrigation. The wetting front of wetted zone from a surface drip emitter traveled farther in vertical direction than in horizontal direction. Under this experimental weather condition, water use efficiency of a drip-irrigated apple field was greatest for 4-drip-emitter system buried at 25 cm, resulting from 10% increase in transpiration but 20% reduction in soil evaporation compared to those for surface 1-drip emitter system. Soil moisture retention curve obtained using disk tension infiltrometer showed significant difference from the curve obtained with pressure plate extractor.

  • PDF

Grain Yield Response of CERES-Barley Adjusted for Domestic Cultivars to the Simultaneous Changes in Temperature, Precipitation, and CO2 Concentration (기온, 강수량, 이산화탄소농도 변화에 따른 CERES-Barley 국내품종의 종실수량 반응)

  • Kim, Dae-Jun;Roh, Jae-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.312-319
    • /
    • 2013
  • Our understanding of the sensitivities of crop responses to changes in carbon dioxide, temperature, and water is limited, which makes it difficult to fully utilize crop models in assessing the impact of climate change on future agricultural production. Genetic coefficients of CERES-Barley model for major domestic cultivars in South Korea (Olbori at Suwon, Albori at Milyang, Saessalbori at Iksan, and Samdobori at Jinju) were estimated from the observed data for daily weather and field trials for more than 10 years by using GenCalc in DSSAT. Data from 1997-2002 annual crop status report (Rural Development Administration, RDA) were used to validate the crop coefficients. The sitecalibrated CERES-Barley model was used to perform crop growth simulation with the 99 treatments of step change combinations in temperature, precipitation and carbon dioxide concentration with respect to the baseline climate (1981-2010) at four sites. The upper boundary corresponds to the 2071-2100 climate outlook from the RCP 8.5 scenario. The response surface of grain yield showed a distinct pattern of model behavior under the combined change in environmental variables. The simulated grain yield was most sensitive to $CO_2$ concentration, least sensitive to precipitation, and showing a variable response to temperature depending on cultivar. The emulated impacts of response surfaces are expected to facilitate assessment of projected climate impacts on a given cultivar in South Korea.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF

Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Jeong-Gyun;Kang, Ye-Seong;Jun, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Song, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.611-624
    • /
    • 2018
  • The percentage of moisture content in rice before harvest is crucial to reduce the economic loss in terms of yield, quality and drying cost. This paper discusses the application of artificial neural network (ANN) in developing a reliable prediction model using the low altitude fixed-wing unmanned air vehicle (UAV) based reflectance value of green, red, and NIR and statistical moisture content data. A comparison between the actual statistical data and the predicted data was performed to evaluate the performance of the model. The correlation coefficient (R) is 0.862 and the mean absolute percentage error (MAPE) is 0.914% indicate a very good accuracy of the model to predict the moisture content in rice before harvest. The model predicted values are matched well with the measured values($R^2=0.743$, and Nash-Sutcliffe Efficiency = 0.730). The model results are very promising and show the reliable potential to predict moisture content with the error of prediction less than 7%. This model might be potentially helpful for the rice production system in the field of precision agriculture (PA).

Investigating Remotely Sensed Precipitation from Different Sources and Their Nonlinear Responses in a Physically Based Hydrologic Model (다른 원격탐사 센서로 추출한 강우자료의 이질성과 이에 의한 비선형유출반응에 미치는 영향)

  • Oh, Nam-Sun;Lee, Khil-Ha;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.823-832
    • /
    • 2006
  • Precipitation is the most important component to the study of water and energy cycle in hydrology. In this study we investigate rainfall retrieval uncertainty from different sources of remotely sensed precipitation field and then probable error propagation in the simulation of hydrologic variables especially, runoff on different vegetation cover. Two remotely sensed rainfall retrievals (space-borne IR-only and ground radar rainfall) are explored and compared visually and statistically. Then, an offline Community Land Model (CLM) is forced with in situ meteorological data to simulate the amount of runoff and determine their impact on model predictions. A fundamental assumption made in this study is that CLM can adequately represent the physical land surface processes. Results show there are big differences between different sources of precipitation fields in terms of the magnitude and temporal variability. The study provides some intuitions on the uncertainty of hydrologic prediction via the interaction between the land surface and near atmosphere fluxes in the modelling approach. Eventually it will contribute to the understanding of water resources redistribution to the climate change in Korean Peninsula.