• Title/Summary/Keyword: Field scale model

Search Result 975, Processing Time 0.026 seconds

The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence (시멘트풀의 영향을 고려한 축소모형 매입말뚝의 거동분석)

  • Park, Jong-Jeon;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.5-15
    • /
    • 2017
  • Skin friction may be one of the most critical factors in designing the prebored and precast pile. Special attention was given to the interface behavior of cement milk-surrounding soil during the installation of prebored and precast pile. Small-scale field model pile test was conducted for the case of single pile. The size and geometry of the small-scale field model piles were designed with pile length 1.3m, boring diameter 0.067 m. Quick maintain-load test was conducted for the cases of boring diameter 150, 125, 90, 86, 74 mm and water-cement ratio 90, 70, 60%. It was shown that the bearing capacity of the pile increased as the cement-water ratio and cement milk thickness increased. Considering the scale effect between the small-scale model test and the actual construction site, it was found that cement milk thickness of 0.1~0.4D (50~200 mm) was reasonable for the stability of the structure. Also, the proper cement paste water / cement ratio was about 70% when considering the results of this study and quality control.

A Field Survey on the Structures of Small Scale Vinyl House by Growing Crops (재배작물별 비규격 소형비닐하우스의 구조실태 조사)

  • Lee, Jong-Won;Lee, Suk-Gun;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.129-132
    • /
    • 2002
  • The purpose of this study was to disclose the problems of structural safety of small scale vinyl house through investigation of actural state of plastic greenhouses by region and growing crops and the objective of a field survey is to develop safety structural model of small scale vinyl house which accounts for the most part of local horticultural facility in order to reduce damage caused by strong wind and heavy snow repeatedly every year.

  • PDF

Nano-continuum multi scale analysis using node deactivation techniques (절점 비활성화 기법을 적용한 나노-연속체 멀티스케일 해석 기법)

  • Rhee Seung-Yun;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.395-402
    • /
    • 2006
  • In analyzing the nano-scale phenomena or behaviors of nano devices or materials, it is often desirable to deal with more atoms than can be treated only with a full atomistic simulation. However, even now, it is advisable to apply the atomistic simulation to the narrow region where the deformation field changes rapidly but to apply the conventional continuum model to the region far from that region. This equivalent continuum model can be formulated by applying the Cauchy-Born rule to the exact atomistic potential as in the quasicontinuum method. To couple the atomistic model with the equivalent continuum model, continuum displacements are conformed to the molecular displacements at the discrete positions of the atoms within the bridging domain. To satisfy the coupling constraints, we apply the Lagrange multiplier method. The continuum model in the bridging model should be applied on the region where the deformation field changes gradually. Then we can make the nodal spacing in the continuum model be much larger than the atomic spacing. In the first step, we generate the atomic-resolution mesh with the nodal spacing equal to the atomic spacing, and then we eliminate the nodal degrees of freedom adaptively using the node deactivation techniques. We eliminate more DOFs as the regions are more far from the atomistic region. Computing time and computational resources can be greatly reduced by the present node deactivation technique in multi scale analysis.

  • PDF

Crop Field Extraction Method using NDVI and Texture from Landsat TM Images

  • Shibasaki, Ryosuke;Suzaki, Junichi
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.159-162
    • /
    • 1998
  • Land cover and land use classification on a huge scale, e.g. national or continental scale, has become more and more important because environmental researches need land cover: And land use data on such scales. We developed a crop field extraction method, which is one of the steps in our land cover classification system for a huge area. Firstly, a crop field model is defined to characterize "crop field" in terms of NDVI value and textual information Textual information is represented by the density of straight lines which are extracted by wavelet transform. Secondly, candidates of NDVI threshold value are determined by "scale-space filtering" method. The most appropriate threshold value among the candidates is determined by evaluating the line density of the area extracted by the threshold value. Finally, the crop field is extracted by applying level slicing to Landsat TM image with the threshold value determined above. The experiment demonstrates that the extracted area by this method coincides very well with the one extracted by visual interpretation.

  • PDF

Development of Mechanized System Model for the Production of Winter Cereal Wrap Silage in the Fallow Paddy Field(3) - Application Test of Mechanized Wrap Silage Production in the Fallow Paddy Field - (답리작 맥류 랩-사일리지의 기계화 시스템 모델 개발(3) - 답리작 맥류 랩-사일리지 기계화 생산의 적응 시험 -)

  • 김혁주;박경규;하유신;홍동혁;나규동;서상훈
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In order to solve the shortage of roughage supply for dairy farm in Korea, winter cereal forage production after harvesting of rice in the fallow paddy field was studied. Two parts are already reported at the previous paper - One was the model development of the mechanized production, and the other was the study of feasibility of the model and its desirable direction in Korea. In this study, the model system is applied for a winter cereal wrap silage production model to practice in Kyungbook National University farm on 3ha scale for 3 years. Results of the research are summarized as follows; It takes 2 or 3 working days to process the wrap silage in middle of May in Daegu region. Also, not much particular problem can be found during the application test of mechanized wrap silage production. Field capacity and field efficiency are estimated to be 0.6-0.85㏊/h and 50-70% in mowing, 1.1∼1.7㏊/h and 52∼80% in tedding and raking, 0.6∼1.1㏊/h and 25∼45% in baling and 0.5∼0.57㏊/h and 75∼85% in wraping, respectively. Total production cost is estimated to be 1,257won/kg-TDN in oversowing and wrap-silage harvest in 1.6㏊ working area. As a result, large scale field is recommended to produce the wrap silage in order to maximize the field capacity.

Near-Field Mixing Characteristics of Submerged Effluent Discharges into Masan Bay

  • Kang, See-Whan;You, Seung-Hyup;Na, Jung-Yul
    • Ocean and Polar Research
    • /
    • v.22 no.1
    • /
    • pp.45-56
    • /
    • 2000
  • Hydrodynamic mixing characteristics of submerged effluent discharges into Masan Bay were investigated by both field observations and numerical model simulations. CORMIX model, a length-scale mixing model, was adopted to obtain the near-field dilution and wastefield characteristics of the effluent discharges into Masan Bay. Model predictions of the near-field dilution rates were in a good agreement with field observations in summer and winter seasons. Seasonal variations in the dilution rates showed that the highest dilution rate was obtained in winter while the lowest dilution rate was in summer. As the effluent discharges are increased with the treatment capacity expansion to be completed by 2011, the dilution rates are expected to be much reduced and the near-field stability of the wastefields will become unstable due to the increased effluent discharges.

  • PDF

Wake Comparison between Model and Full Scale Ships Using CFD (CFD를 이용한 모형선과 실선 스케일의 반류 비교)

  • Yang, Hae-Uk;Kim, Byoung-Nam;Yoo, Jae-Hoon;Kim, Wu-Joan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.150-162
    • /
    • 2010
  • Assessment of hydrodynamic performance of a ship hull has been focused on a model ship rather than a full-scale ship. In order to design the propeller of a ship, model-scale wake is often extended to full-scale based upon an empirical method or designer's experience, since wake measurement data for a full-scale ship is very rare. Recently modern CFD tools made some success in reproducing wake field of a model ship, which implicates that there are some possibilities of the accurate prediction of full-scale wakes. In this paper firstly the evaluation of model-scale wake obtained by Fluent package was performed. It was found that CFD calculation with the Reynolds-stress model (RSM) provided much better agreement with wake measurement in the towing tank than with the realizable k-$\varepsilon$ model (RKE). In the next full-scale wake was calculated using the same package to find out the difference between model and full-scale wakes. Three hull forms of KLNG, KCS, KVLCC2 having measurement data open for the public, were chosen for the comparison of resistance, form factor, and propeller plane wake between model ships and full-scale ships.

The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors (중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석)

  • Lee, Seong-Eun;Shin, Sun-Hee;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.

Numerical Modeling for Turbulent Partially Premixed Flames (난류 부분 예혼합 화염장에 대한 수치 모델링)

  • Kim, Hoo-Joong;Kim, Yomg-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.191-194
    • /
    • 2003
  • The present study is focused on the subgrid scale combustion model in context with a Large Eddy Simulation. In order to deal with detailed chemical kinetic, the level-set method based on a flamelet model is addressed. In this model, the flame front is treated as an interface, represented by an iso-surface of a scalar field G. This iso-surface is convected by the velocity field and its filtered quantities are include the turbulent burning velocity, which is to be modelled. For modelling the turbulent burning velocity, an equation for the length-scale of the sub-filter flame front fluctuations was developed. The formulations and issues for the turbulent premixed and partially premixed flames are addressed in detail.

  • PDF

A Development of Reduced-scale Model to Predict of Environmental Characteristics of AC/DC Hybrid Overhead Transmission Line (AC/DC 하이브리드 선로의 전기환경특성 예측을 위한 축소모델 개발)

  • Choi, In-Hyuk;Shin, Koo-Yong;Lee, Dong-Il;Lim, Jae-Seop;Kim, Young-Hong;Maeng, Jong-Ho;Ju, Mun-No
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.676-682
    • /
    • 2012
  • To review application of HVDC (High Voltage Direct Current) transmission line to HVAC T/L in operation, reduced-scale model was designed and manufactured. The arms of model were designed to change height and interval of conductors. Electrical environmental interferences were estimated by various configuration of AC 345kV and DC 250kV T/L. The interferences such as electric field intensity and ion current density were measured and converted reduced-scale factor to full-scaled. Additionally, effects between AC and DC T/L were studied.