• Title/Summary/Keyword: Field observation

Search Result 1,630, Processing Time 0.035 seconds

KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES

  • KIM, SEUNG-LEE;LEE, CHUNG-UK;PARK, BYEONG-GON;KIM, DONG-JIN;CHA, SANG-MOK;LEE, YONGSEOK;HAN, CHEONGHO;CHUN, MOO-YOUNG;YUK, INSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

A Study on Improvement of the Observation Error for Optimal Utilization of COSMIC-2 GNSS RO Data (COSMIC-2 GNSS RO 자료 활용을 위한 관측오차 개선 연구)

  • Eun-Hee Kim;Youngsoon Jo;Hyoung-Wook Chun;Ji-Hyun Ha;Seungbum Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, for the application of observation errors to the Korean Integrated Model (KIM) to utilize the Constellation Observing System for Meteorology, Ionosphere & Climate-2 (COSMIC-2) new satellites, the observation errors were diagnosed based on the Desroziers method using the cost function in the process of variational data assimilation. We calculated observation errors for all observational species being utilized for KIM and compared with their relative values. The observation error of the calculated the Global Navigation Satellite System Radio Occultation (GNSS RO) was about six times smaller than that of other satellites. In order to balance with other satellites, we conducted two experiments in which the GNSS RO data expanded by about twice the observation error. The performance of the analysis field was significantly improved in the tropics, where the COSMIC-2 data are more available, and in the Southern Hemisphere, where the influence of GNSS RO data is significantly greater. In particular, the prediction performance of the Southern Hemisphere was improved by doubling the observation error in global region, rather than doubling the COSMIC-2 data only in areas with high density, which seems to have been balanced with other observations.

A Study on Index of Vegetation Surface Roughness using Multiangular Observation

  • Konda, Asako;Kajiwara, Koji;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.673-678
    • /
    • 2002
  • A satellite remote sensing is useful for vegetation monitoring. But it has some problem. One of these, it is difficult to find a difference of vegetation surface roughness using satellite remote sensing. Each vegetation type has unique surface roughness, for example needle leaves forest, broad leaves forest and grassland. Difference of vegetation surface roughness can be detected by satellite multiangular observation. In this study, objective is to propose index of vegetation surface roughness using BRF property. General vegetation indices are calculated from nadir data of satellite data. A proposed index is calculated from two different observation zenith angle data. Two different zenith data can provide BRF (Bi-directional Reflectance Factor) property of satellite observation data. A proposed index was able to detect different value on where NDVI shows similar high value areas of rice field and forest. This index is useful for vegetation monitoring.

  • PDF

The Role of Classroom Observation Instruments in Supporting Mathematics Teachers' Instructional Change (수학 교사의 수업실천역량 향상을 위한 수업관찰도구의 역할)

  • Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.39 no.2
    • /
    • pp.183-198
    • /
    • 2023
  • Classroom observation instruments are often used to evaluate teachers' instructional practices and provide feedback to inform interventions or research studies, or professional development efforts. While designed as research tools, many classroom observation instruments can provide important information to support teachers' learning and instructional change by providing a focus for formative assessment or self-evaluation of practice. In this paper, we review two classroom observation tools and the protocols for their use with an implementation example for one of the tools. These tools are more foreign to the field compared to others but have features that might serve as affordances in relation to the purposes of a specific investigation.

DETERMINATION OF USER DISTRIBUTION IMAGE SIZE AND POSITION OF EACH OBSERVATION AREA OF METEOROLOGICAL IMAGER IN COMS (COMS 기상탑재체의 관측영역별 사용자 배포 영상의 크기 및 위치결정)

  • Seo, Jeong-Soo;Seo, Seok-Bae;Kim, Eun-Kyou
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.415-424
    • /
    • 2006
  • In this paper, requirements of Meteorological Administration about Meteorological Image. (MI) of Communications, Ocean and Meteorological Satellite (COMS) is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV) stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

A Study of Atmospheric Field around the Pohang for Dispersion Analysis of Air Pollutants -Numerical Simulation of Wind Field- (대기오염 확산 해석을 위한 포항지역 기상장 연구 -바람장 수치모의-)

  • 이화운;정우식;김현구;이순환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Sea/land circulation system is a representative mesoscale local circulation system in coastal area. In this study, wind fields around coastal area. Pohang, which is affected by this system was investigated and its detailed characteristic analysis was carried out. The following can be found out from the numerical simulation. Generally, at nighttime mountain winds prevail and land breeze toward the coastal area was well simulated During daytime, valley wind and sea breeze was simulated in detail. Especially, as a result of analyzing the land breeze path, it could be found along the coastline as it flows out through low land coastal area. In order to investigate the accuracy of model results. wind speed, temperature and wind direction of continuous typical sea/land breeze occurrence day was compared with observation data. Analyzing the characteristics of local circulation system was very hard because of horizontally sparse observation data but from the above result, a numerical simulation using RAMS, which satisfies the spatial high resolution, will provide more accurate results.

A Study on Statistical Analysis of Local Ice Loads Measured during the Arctic Voyage of the IBRV ARAON

  • Kwon, Yong-Hyeon;Choi, Kyungsik;Lee, Tak-Kee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.186-197
    • /
    • 2015
  • In summer 2010, field measurements of local ice loads were carried out in the Arctic Ocean using the Korean first icebreaking research vessel, ARAON. In some previous studies by the authors, several investigations for the data measured at 2010 including the relationship between the measuring points and ice loads, the possibility for observation of higher ice load and the relationship between the ship speed and ice loads were reported. During 10 days in August 2013, new field measurements were performed in similar waters of the Arctic Ocean using the same vessel, ARAON. The aim of this study is to investigate the statistical properties of 2013 measurements and compare results by two periods.

A Study on the Development of Hourly Evaporation Recording Instrument for Class A Pan (대형증발계용 매시간 증발 기록계 개발에 관한 연구)

  • Bu-Yong Lee
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.323-327
    • /
    • 2001
  • A new method is developed to estimate the evaporation of water from a surface with high accuracy and resolution. The principle of new method is to detect a weight change of buoyant weight according to a change in water level of Class A Pan mesured by the use of a strain-gauge load cell. Field test of evaporation recording new instrument was carried out at Suwon for 10 days July 1999. It is possible in field observation to measure hourly evaporation amount by newly developed evaporation recording instrument in Class A Pan against strong solar radiation. Present study provide a possibility of domestic high accuracy instrument development below than 0.1mm water level measurement accuracy. If there is low humidity and high wind speed conditions which is possible to evaporate from water surface during night time. And it needs continuous study to understand between meteorological elements and latent heat effect at ground level by field observation study using high accuracy evaporation recording instrument.

  • PDF

Examination of Vertical 1D Sediment Resuspension and Diffusion Model Using Field Data Collected in the Saemangeum Area (새만금 해역에서 연직 1차원 퇴적물 확산모델 검증)

  • Lee, Guan-Hong;Lee, Hee-Jun
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.537-543
    • /
    • 2008
  • The sediment resuspension and diffusion model is an integral part of a sediment transport and morphologic change model. We examined a vertical one-dimensional sediment resuspension and diffusion model using field data collected at about 10-m depth off the Saemangeun $4^{th}$ dike. The field data include waves, currents and suspended sediment concentration near the bed for about a day in May, 2007. The suspended sediment concentration obtained from the 1D model overestimated the observation about two orders of magnitude with single grain size and multiple grain sizes. The incorporation of the bed armoring effect, which adjusts the amount of suspended sediment with the available bed sediment, improved the agreement between the model and observation within a factor of two.