• Title/Summary/Keyword: Field current

Search Result 8,133, Processing Time 0.038 seconds

Analysis of Magnetic Field Application Effect on Fault Current Limiting Characteristics of a Flux-lock Type SFCL

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.255-259
    • /
    • 2008
  • The magnetic field application effect on resistance of a high-$T_c$ superconducting (HTSC) element comprising a flux-lock type superconducting fault current limiter (SFCL) was investigated. The YBCO thin film, which was etched into a meander line using a lithography, was used as a current limiting element of the flux-lock type SFCL. To increase the magnetic field applied into HTSC element, the capacitor was connected in series with a solenoid-type magnetic field coil installed in the third winding of the flux-lock type SFCL. There was no magnetic field application effect on the resistance of HTSC element despite the application of larger magnetic field into the HTSC element when a fault happened. The resistance of HTSC element, on the contrary, started to decrease at the point of four periods from a fault instant although the amplitude of the applied magnetic field increased.

Design and Characteristic Analysis of Wound Rotor Synchronous Motor for ISG according to Field Current Combination (계자전류 조합에 따른 ISG용 권선형 동기전동기의 설계 및 특성분석)

  • Kwon, Sung-Jun;Lee, Dongsu;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1228-1233
    • /
    • 2013
  • In this paper, design of Wound Rotor Synchronous Motor(WRSM) for Integrated Starter and Generator(ISG) is performed based on Finite Element Analysis(FEA). WRSM can control not only magnitude and phase of armature current, but also field current. Thus, various control methods can be considered. Since driving characteristic of WRSM depends greatly on the control method, characteristic analysis accoding to possible driving current combination is reguired. Especially in high speed region, the control method that reduces unnecessary d-axis current by reducing field current is possible, which is similar to field weakening control. By the current combination reducing field and d-axis current, the design minimizing copper loss to increase efficiency on identical driving point is possible. In this paper, high efficient WRSM is designed applying the current combination which can minimize copper loss on each driving point.

Anatomy of a flare-producing current layer dynamically formed in a coronal magnetic structure

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.3-42
    • /
    • 2016
  • No matter how intense magnetic flux it contains, a coronal magnetic structure has little free magnetic energy when a composing magnetic field is close to a potential field, or current-free field where no volume electric current flows. What kind of electric current system is developed is therefore a key to evaluating the activity of a coronal magnetic structure. Since the corona is a highly conductive medium, a coronal electric current tends to survive without being dissipated, so the free magnetic energy provided by a coronal electric current is normally hard to release in the corona. This work aims at clarifying how a coronal electric current system is structurally developed into a system responsible for producing a flare. Toward this end, we perform diffusive MHD simulations for the emergence of a magnetic flux tube with different twist applied to it, and go through the process of structuring a coronal electric current in a twisted flux tube emerging to form a coronal magnetic structure. Interestingly, when a strongly twisted flux tube emerges, there spontaneously forms a structure inside the flux tube, where a coronal electric current changes flow pattern from field-aligned dominant to cross-field dominant. We demonstrate that this structure plays a key role in releasing free magnetic energy via rapid dissipation of a coronal electric current, thereby producing a flare.

  • PDF

New Force Expression on Dielectrics: Equivalent Electrifying Current Method

  • Choi, Hong-Soon;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2262-2267
    • /
    • 2017
  • A new force expression on dielectrics subjected to electric field is proposed in this paper. It is the electric version of the equivalent magnetizing current method in magnetic field. From the idea of electromagnetic duality, virtual equivalent electrifying magnetic current method is conjectured in the field of dielectric force problem. Numerical results show that the proposed method has good agreements with the conventional methods. The merits and demerits of the proposed method are also discussed.

$100 A/mm^2$ Class Bi-2223 Tapes in Electromechanical Devices (전력기기에서 $100 A/mm^2$급 Bi-2223테이프)

  • 류경우;최경주;성기철;류강식
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • $100 A/mm^2$ class Bi-2223 tapes have recently become commercially available. Some important characteristics of the tapes, e .g. critical current, ac loss, characteristics at joint, fault current characteristics, are required for an application such as a power cable or a power transformer. In this paper they have been investigated experimentally. The results indicate that the self-field loss of the high current density tapes is not negligible, compared to resistive loss in a copper wire for the same currents. In a cable, the self-field loss for relatively large currents is much larger than the magnetization loss due to an external field. But in a transformer, the magnetization loss is dominant, compared to the self-field loss. Finally the fault current characteristics show that the high current density tapes are never safe from burn-out even for fault currents with a few cycles.

A study on conduction current and D.C. breakdown characteristics in dielectric liquids (절연유의 도전전류와 직류절연파괴특성에 관한 연구)

  • 서국철
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.231-236
    • /
    • 1981
  • It has been known that D.C. breakdown Voltage is lower than A.C. breakdown Voltage in insulatingoil, but there are still many unvivid points at electric conduction in breakdown or under of high electric field. This study measured the electric current-electric field characteristics (I-E characteristics) and the breakdown Voltage under of D.C. electric field of insulating oil using the system of electrodes that are near the Uniform electric field with a result. I can study, electric conduction in area of high electric field depends upon the Schottky effect. The liquidity of breakdown electric field takes place by the local concentration of electric field. The longer gap is and the more electric current is the more breakdown Voltage decreased. There are not almost the change of electric current-electric field characteristics by materials of electrode.

  • PDF

Quench Behaviors of Superconducting YBCO film for Fault Current Limiters applying Protective Current Transformer (변류기(p-CT)를 적용한 YBCO 초전도 저항형 한류기의 ?치 특성)

  • 박권배;이방욱;강종성;오일성;현옥배
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.128-131
    • /
    • 2004
  • The resistive superconducting fault current limiters (SFCLs) are very attractive devices for the electric power network. But they have some serious problems when the YBCO thin films were used for the current limiting materials due to the in homogeneities caused by manufacturing process. When the YBCO films have some inhomogeneities, simultaneous quenches are difficult to achieve when the fault current limiting units are connected in series for increasing operating voltage ratings. Magnetic field application is one of the prospective way of inducing simultaneous quenches far the series-connected resistive FCL components. Magnetic field was typically generated by the fault current thorough a coil, which is connected to components of the fault current limiter in series, leaving the problem, which provides significant inductance to the power line and suppresses critical current density of the superconducting components. In this article we investigated the possible application of the protective current transformer (p-CT), which is available current source to the magnetic coil. This system inductively coupled to the circuit, therefore, remarkably reducing impedance to the circuit. The current by the protective current transformer was directly fed to the coil, generating magnetic field large enough to reduce critical current density of the components. This successfully induced simultaneous quenches of the series-connected resistive FCL components.

  • PDF

Self Field Effect Analysis of Bi-2223 Tape-Stacked-Cable With Constant Current Density Assumption

  • Nah, Wansoo;Joo, Jinnho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2000
  • In this paper, we analyze self field effects of Bi-2223 tape-stacked cable assuming constant current density in the cross section of stacked cable. Generally, the critical current of Bi-2223 tape-stacked-cable in much less than the total summation of critical currents of each tape, which is mainly due to the self magnetic fields of the cable itself. Therefore, to predict the critical current of Bi-2223 tape-stacked-cable, we needs to analyze the self filed effects on the stacked cable as well as critical current density data(J$\_$C/) of one tape. To make it more complex, the critical current degradation of Bi-2223 tape is an-isotropic; the critical current is lower in the normal magnetic field(to the tape surface) than in the parallel field. In the paper, a novel approach to predict the critical current of a Bi-2223 tape-stacked-cable from a J$\_$C/-B curve of one tape is presented with the assumption of constant current density across the stacked cable, The approach basically includes the load analysis of the stacked tapes, and its usefulness is confirmed by the experimental data.

  • PDF

Analysis on the Quench Characteristics According to Magnetic Field of the Matrix-Type SFCL with $1{\times}3$ Matrix Structure ($1{\times}3$ 행렬구조를 갖는 매트릭스형 초전도 한류기의 자장유무에 따른 퀜치특성 분석)

  • Oh, Kum-Gom;Cho, Yong-Sun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.343-348
    • /
    • 2008
  • We investigated the quench characteristics accordance with increase of turns and applied voltage of matrix-type superconducting fault current limiter (SFCL) with $1{\times}3$ matrixes. The matrix-type SFCL consists of the trigger part to apply magnetic field and the current-limiting part to limit fault current. The fault current limiting characteristics according to the increase of magnetic field and applied voltage were nearly same. This is because the application of magnetic field has not an affect on total impedance of SFCL. When number of turns of reactor increased, the voltage difference between two superconducting units in the current-limiting part according was decreased. The resistance difference generated in two superconducting units also was decreased. Therefore, we confirmed that the differences of critical behaviors between superconducting units by application of magnetic field were decreased. By this results, we could be decided the optimum number of turns of reactor to apply magnetic field.

Evaluation of Electrical and Leakage Current Characteristics of Polymer Arrester(42kV 10kA Class3) for Railroad Line (전차선로용 폴리머 피뢰기(42kV 10kA Class3)의 전기적 특성 및 누설전류 특성 평가)

  • Kim, Seok-Sou;Choi, Ike-Sun;Park, Choon-Hyun;Cho, I-Gon;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1171-1174
    • /
    • 2004
  • Leakage current of the polymer arrester(42kV, 10kA, Class3) for railroad line applied actually field was observed and electrical characteristics of arrester before and after applied actually field were investigated. During applied actually field, leakage current of arresters were $610{\sim}647{\mu}A$ in AN SAN line and $500{\mu}A$ in YUNG DONG line. After applied actually field, electrical characteristics of arrester, such as insulation test, reference voltage test, leakage current test and partial discharge current test, wasn't variation as before applied actually field.

  • PDF