• 제목/요약/키워드: Field capacity

검색결과 2,003건 처리시간 0.039초

Analysis of Damage Mechanism for Optimum Design in Discontinuously-Reinforced Composites (불균질입자강화 복합재료의 최적설계를 위한 손상메커니즘 해석)

  • 조영태;조의일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제13권4호
    • /
    • pp.106-112
    • /
    • 2004
  • In particle or short-fiber reinforced composites, cracking or debonding of the reinforcements cause a significant damage mode because the damaged reinforcements lose load carrying capacity. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of discontinuously-reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

An Antioxidant Capacity Assay Using a Polyvinyl Alcohol-Based DPPH Pellet

  • Ahn, Yeong-Hee;Yoo, Jong-Shin;Kim, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2557-2560
    • /
    • 2010
  • To assay for antioxidant capacity of natural products considered important in producing human health benefits, a practical and economical method using pellet techniques was developed. A standard visualizing reagent, 1,1diphenyl-2-picryl-hydrazyl (DPPH), was mixed with a water-miscible polyvinyl alcohol (PVA), serving as a solid phase support for the DPPH reagent. A DPPH pellet was prepared by dropping a small volume of the DPPH solution onto PET film, and drying in an oven. The PVA-based DPPH pellet was dissolved into water, in which the water-miscible PVA plays as a non-ionic surfactant to help the DPPH reagent to be dissolved into the solvent. Using the DPPH assay, the antioxidant capacity of water-soluble extracts of black soybean, barley, green tea, and green gram was examined. Among the natural products tested, green tea showed the highest antioxidant capacity. This PVA-based DPPH antioxidant assay can be further applied in the natural food, raw plant material, and health product inspection field.

Effect of Nickel Oxide on Hydrogen Storage Behaviors of Mesoporous SBA-15

  • Lee, Seul-Yi;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.231-231
    • /
    • 2009
  • In this work, we prepared the Ni-loaded porous SBA-15 (SBA-15) by a depositionprecipitation (D-P) method, in order to enhance the hydrogen storage capacity. The structure and morphology of the Ni/SBA-15 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). The results showed that, at the Ni loading used at the DP times in the range of 0-120 min, SBA-15 preserved the well-ordered hexagonal porous arrangement. The textural properties of the Ni/SBA-15 were analyzed using N2 adsorption isotherms at 77 K. Specific surface area and mesopore volume of the samples were determined from the Brunauer-Emmett-Teller (BET) equation and Barrett-Joiner-Halenda (BJH) method, respectively. The hydrogen storage capacity of the Ni/SBA-15 was evaluated at 298 K/10 MPa. The hydrogen storage capacity of the Ni/SBA-15 was increased in accordance with Ni content. Consequently, it was found that the presence of Ni on mesoporous SBA-15 created hydrogen-favorable sites which enhanced the hydrogen storage capacity by spillover effect.

  • PDF

Geotextiles Horizontal Drain between Earth Fills and Natural Soft Ground (토목섬유를 사용한 무처리 연약지반과 성토사이의 수평배수층)

  • Lee, Hyoung-Kyu;Kong, Kil-Yong;Kim, Hyun-Tae
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제44권4호
    • /
    • pp.129-138
    • /
    • 2002
  • This paper presents a study on the discharge capacity of geotextiles as a horizontal drain layer placed between the layers of earth fill and natural soft ground. Required discharge capacity of geotextiles as drain layers estimated by consolidation analysis is proportional to the consolidation coefficient of the ground soils and the width of the earth fills. The field discharge capacity of the geotextiles are measured by the hydraulic transmissivity test. And the results show wide variation according to the material characteristics of geotextiles, water content of the soils, vertical pressure, and etc. For the short horizontal drain length, geotextile filter mat can be used for the horizontal drain layer. And f3r the long drain($25{\sim}55m$), it is used for the drain together with Bord Drain.

An Experimental Study on Bearing Capacity of Drilled Shaft with Mid-size (중구경 현장타설말뚝의 지지력 특성에 관한 실험적 연구)

  • Lee, Kwang-Wu;You, Seung-Kyong;Park, Jeong-Jun;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • 제18권4호
    • /
    • pp.263-272
    • /
    • 2019
  • This paper describes the results of bearing capacity using field loading test of pile, in order to extend the applicability of drilled shaft with mid-size, and the results were compared with the prediction results of design bearing capacity by empirical formular. The static load test result showed that the allowable bearing capacity of high pile strength was about 2.4 times higher than that of low pile strength. The dynamic load test result showed that the allowable bearing capacity of high pile strength was about 1.4 times~1.5 times higher than that of low pile strength. The comparison result of allowable bearing capacity between static and dynamic load test showed that the difference of allowable load ranged from 3% to 6% under the same settlement conditions. As a result of comparing the ultimate bearing capacity by load test and design bearing capacity, it was found that the FHWA proposed equation could be more reasonable than the other proposed equation in load sharing ratios of end bearing and skin friction.

A Field Test on Bearing Capacity Characteristics of Materials for Ground Cavity Restoration Based on Plate Bearing Test (평판재하시험을 이용한 공동 복구재료의 지지특성에 관한 현장실험)

  • Park, Jeong-Jun;Shin, Heesoo;Kim, Dongwook;You, Seung-Kyong;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • 제17권4호
    • /
    • pp.293-304
    • /
    • 2018
  • This paper described a results of field test based on plate bearing test of the restoration material, which was developed to restore the ground cavity due to sewerage damage. The analysis of bearing capacity characteristics on the restoration materials was performed by experimental results. The results showed that the load bearing capacity in the maximum stress condition of the foundation ground is about 66%-70%, when the expansion mat is embedded at the bottom of 0.1 m and 0.2 m from the ground surface. However, The load bearing capacity of expansion mat according to embedded depth was not large. The load bearing capacity of concrete mats was about 82%-90% compared with that of ground surface, and it showed about 50% of the load bearing capacity compared with the expansion mat. As a result of analysis of allowable bearing capacity according to restoration materials, it was confirmed that the allowable bearing capacity of the expansion mat and the concrete was about 130%-150% and about 160% more than the foundation ground, respectively.

Analysis of Electric Field Distribution according to Surface Roughness of Aramid Insulating Paper Using Boundary Element Method (경계요소법을 이용한 표면 거침도에 따른 아라미드 절연지의 전계분포 해석)

  • Kim, Tag-Yong;Ahn, Byung-Chul;Cho, Kyung-Soon;Park, Hyung-Jun;Hong, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • 제21권5호
    • /
    • pp.34-39
    • /
    • 2006
  • In this paper, we investigated the electric field distribution according to the roughness in aramid insulating paper for electric machine. Aramid insulating paper has been used to electric insulating of the traction motor and generators for large capacity. We studied the electric field distribution using boundary element method for Aramid insulating paper. As a result of simulation, the electric field increased according to the surface roughness existence. Electric field decreased due to radius of surface roughness reduction, and Electric field concentration appeared at electrode boundary and rough surface.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • 제5권5호
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

The study on the Characteristics of Ultimate Bearing Capacity and Major Design Parameters for Single Stone Column (단일 쇄석다짐말뚝의 지지력 특성과 주요 설계 파라미터에 관한 고찰)

  • Chun, Byung-Sik;Kim, Won-Cheul;Jo, Yang-Woon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.552-560
    • /
    • 2004
  • Stone column is a soil improvement method and can be applicable for loose sand or weak cohesive soil. Since the lack of sand in Korea, stone column seems one of the most adaptable approach for poor ground as a soil improvement method. However, this method was not studied for practical application. In this paper, the most effective design parameters for the being capacity of stone column were studied. The parametric study of major design factors for single stone column was carried out under the bulging and general shear failure condition, respectively. Especially, a test result of single stone column by static load was compared with the bearing capacity values of suggested formulas. The analysis result showed that the ultimate bearing capacity by the formula was much less than the measured value by the static load test. Especially, the result of the parametric study under general shear failure condition showed that the bearing capacity has apparent difference between each suggested formulas with the variation of the major design parameters. Therefore, the result of this study can be a suggestion which is applicable for the field test and the future research.

  • PDF

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.