• 제목/요약/키워드: Field Velocity Approach

검색결과 154건 처리시간 0.021초

Deriving vertical velocity in tornadic wind field from radar-measured data and improving tornado simulation by including vertical velocity at velocity inlet

  • Yi Zhao;Guirong Yan;Ruoqiang Feng;Zhongdong Duan;Houjun Kang
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.245-259
    • /
    • 2024
  • In a tornadic wind field, the vertical velocity component in certain regions of tornadoes can be significant, forming one of the major differences between tornadic wind fields and synoptic straight-line wind fields. To better understand the wind characteristics of tornadoes and properly estimate the action of tornadoes on civil structures, it is important to ensure that all the attributes of tornadoes are captured. Although Doppler radars have been used to measure tornadic wind fields, they can only directly provide information on quasi-horizontal velocity. Therefore, lots of numerical simulations and experimental tests in previous research ignored the vertical velocity at the boundary. However, the influence of vertical velocity in tornadic wind fields is not evaluated. To address this research gap, this study is to use an approach to derive the vertical velocity component based on the horizontal velocities extracted from the radar-measured data by mass continuity. This approach will be illustrated by using the radar-measured data of Spencer Tornado as an example. The vertical velocity component is included in the initial inflow condition in the CFD simulation to assess the influence of including vertical velocity in the initial inflow condition on the entire tornadic wind field.

유선추적법을 이용한 자유표면 예측기법 개발 (Prediction of Free Surface by Streamline-Tracing Method)

  • 김태효;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.175-178
    • /
    • 1998
  • Tracings streamlines in global coordinate, especially with finite element mesh, requires much computation due to C0 continuity of velocity field. In this study, a new approach is presented for the determination of streamlines from velocity field obtained by FE analysis. It is shown that amount of calculation can be drastically reduced and boundary of element can be easily treated. The approach is applied to the problem of free surface of deforming workpieces in shape rolling.

  • PDF

축대칭 복합압출공정의 소성변형 연구 (A Study of the Plastic Deformation in Axisymmetric Combined Extrusion)

  • 한철호
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2005-2015
    • /
    • 1994
  • An analytical method based on the upper bound approach for the cup-bar axisymmetric combined extrusion is presented to determine the deformation zones as well as extrusion load and deformed geometry in the early stage. A new kiematically admissible velocity field is derived by the appropriate transformation of the original velocity field and applying the flow function approach. The derived velocity field is directly related to the boundary function for the plastically deforming zones and the parameter controlling the flow direction to the forward part or backward part. Experiments are carred out with the annealed aluminum 2024 at room temperature for the various area reductions. The workhardening effect is considered in the formulation as a function of the height ratio between the deformed billet and the orighinal billet to calculate the extrusion pressures. The theoretical predictions for the extrusion loads and deformed configuration are in good agreement with the experimental results.

Loose Coupling Approach of CFD with a Free-Wake Panel Method for Rotorcraft Applications

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Sang-Hun;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2007
  • As a first step toward a complete CFD-CSD coupling for helicopter rotor load analysis, the present study attempts to loosely couple a CFD code with a source-double panel method. The far-field wake effects were calculated by a time-marching free vortex wake method and were implemented into the CFD module via field velocity approach. Unlike the lifting line method, the air loads correction process is not trivial for the source-doublet panel method. The air loads correction process between the source-doublet method and CFD is newly suggested in this work and the computation results are validated against available data for well-known hovering flight conditions.

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

Saccadic 안구운동 해석에 대한 통계학적인 접근 (A Statistical Approach to Analysis of Saccadic Eye Movements)

  • Kim, Nam-Gyun;Kim, Bu-Gil
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권3호
    • /
    • pp.289-292
    • /
    • 1989
  • In this study we propose an approach based on statistical method which use the whole of saccades instead of using a few points of saccades in the quantitative analyse saccades. We computed statistical parameters such as mean velocity, quadratic mean velocity, standard duration, skewness of saccades velocity, flattness factor of saccades velocity, and mean delay by considering eye velocity as a probability density function. The results abtained are the following as ; This parameters showed the same trend like that of the main sequence. They were not biased by the systematic errors due to the arbitrary threshold. They were also less sensitive to noise, which was tested through the model simulation. So they are expected to provide a more comprehensive quantitative description of the dynamic properties of saccade in the diagnostic field.

  • PDF

HYDROMAGNETIC FLUCTUATING FLOW OF A COUPLE STRESS FLUID THROUGH A POROUS MEDIUM

  • Zakaria, M.
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.175-191
    • /
    • 2002
  • The equations of a polar fluid of hydromagnetic fluctuating through a porous medium axe cast into matrix form using the state space and Laplace transform techniques the resulting formulation is applied to a variety of problems. The solution to a problem of an electrically conducting polar fluid in the presence of a transverse magnetic field and to a problem for the flow between two parallel fixed plates is obtained. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results for the velocity, angular velocity distribution and the induced magnetic field are given and illustrated graphically for each problems.

근접음장 연속법과 등가 음원법을 이용한 음향홀로그래피 연구 (Study of Acoustic Holography using Equivalent Source Method with Continuation of Acoustic Near-field)

  • 김성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.643-648
    • /
    • 2011
  • This paper deals with the ESM(equivalent source method) with the continuation of acoustic near-field for NAH(near-field acoustic holography) to overcome the finite measurement aperture effect and reconstruct the normal velocity on an arbitrarily shaped structure surface. The continuation method is an extension of the measured sound field into a region outside and is based on the Green's function relating acoustic quantities on the two conformal surfaces. This algorithm is not limited to planar surfaces and can be applied to arbitrarily shaped surfaces. The ESM is an alternative approach of BEM-based NAH for the reconstruction on a general structure. In ESM the acoustic field is represented by a set of point sources located over a surface that is close to the structure surface. The simulation results of this study shows that the reconstruction error of particle velocity on the source surface is 11% and 16% for planar and cylindrical sources separately.

  • PDF

변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구 (Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect)

  • 박충희;고윤기;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

Enhancing the Reconstruction of Acoustic Source Field Using Wavelet Transformation

  • Ko Byeongsik;Lee Seung-Yop
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1611-1620
    • /
    • 2005
  • This paper shows the use of wavelet transformation combined with inverse acoustics to reconstruct the surface velocity of a noise source. This approach uses the boundary element analysis based on the measured sound pressure at a set of field points, the Helmholtz integral equations and wavelet transformation for reconstructing the normal surface velocity field. The reconstructed field can be diverged due to the small measurement errors in the case of nearfield acoustic holography (NAH) using an inverse boundary element method. In order to avoid this instability in the inverse problem, the reconstruction process should include some form of regularization for enhancing the resolution of source images. The usual method of regularization has been the truncation of wave vectors associated with small singular values, although the order of an optimal truncation is difficult to determine. In this paper, a wavelet transformation is applied to reduce the computation time for inverse acoustics and to enhance the reconstructed vibration field. The computational speed-up is achieved, with solution time being reduced to $14.5\%$.