• 제목/요약/키워드: Field Evaporation

검색결과 295건 처리시간 0.046초

보수성 도로 포장재의 증발효율 변화에 의한 중규모 순환장 특성 분석 (The Analysis of Mesoscale Circulations Characteristics Caused by the Evaporation-Efficiency of Water Retention Pavement)

  • 김인수;이순환;김해동;서영찬
    • 한국지구과학회지
    • /
    • 제30권6호
    • /
    • pp.709-720
    • /
    • 2009
  • 보수성 포장재가 지표면 열수지와 중규모 순환장에 미치는 영향을 파악하기 위하여 수치실험과 야외 관측을 실시하였다. 수치실험에 이용된 모형은 LCM(Local Circulation Model)이며, 야외 관측은 대기가 안정되어 날씨가 맑은 2007년 7월 19일 실시되었다. 야외 관측실험에서 보수성 포장재 지표면 온도의 최대치는 1430 LST에서 $41.2^{\circ}C$이고, 보수성 재료가 도포되어 있지 않은 일반 아스팔트보다 $16.1^{\circ}C$ 낮게 관측되었다. 수치실험에서는 증발효율 0.3을 가정한 case BET03에서 관측과 가장 유사한 값을 나타내었다. 이때 현열과 잠열플럭스는 각각 227 와 229 $W/m^2$이다. 수치실험 결과, 보수성 포장재는 낮은 지표면 온도, 혼합고와 관련된 잠열플럭스를 높이는 경향이 나타난다. 보수성 포장재에 의한 잠열플럭스의 불연속은 교외풍과 같은 중규모 순환장의 발달을 강화시키는 역할을 한다.

CONSTRAINING THE MAGNETIC FIELD IN THE ACCRETION FLOW OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

  • QIAO, ERLIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.457-459
    • /
    • 2015
  • Observations show that the accretion flows in low-luminosity active galactic nuclei (LLAGNs) probably have a two-component structure with an inner hot, optically thin, advection dominated accretion flow (ADAF) and an outer truncated cool, optically thick accretion disk. As shown by Taam et al. (2012), within the framework of the disk evaporation model, the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field. We define the parameter ${\beta}$ as $p_m=B^2/8{\pi}=(1-{\beta})p_{tot}$, (where $p_{tot}=p_{gas}+p_m$, $p_{gas}$ is gas pressure and $p_m$ is magnetic pressure) to describe the strength of the magnetic field in accretion flows. It is found that an increase of the magnetic field (decreasing the value of ${\beta}$) results in a smaller truncation radius for the accretion disk. We calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole by considering the effects of the magnetic field on the truncation radius of the accretion disk. By comparing with observations, we found that a weaker magnetic field (corresponding to a bigger value of ${\beta}$) is required to match the observed correlation between $L_{2-10keV}/L_{Edd}$ and the bolometric correction $k_{2-10keV}$, which is consistent with the physics of the accretion flow with a low mass accretion rate around a black hole.

RF Magnetron Sputtering 및 Evaporation을 이용하여 증착한 CdTe 박막의 물성평가

  • 김민제;조상현;송풍근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.345-345
    • /
    • 2012
  • 최근 의료산업에서는 고해상도 및 동영상 구현이 가능한 직접 방식의 X-선 검측센서에서 X-ray 흡수효율이 좋은 반도체 센서(CdTe, CdZnTe 등)와 성숙된 기술, 집적효율이 뛰어난 CMOS 공정을 이용한 제품을 출시하여 대면적화 및 고집적화가 가능하게 되어 응용분야가 점차 확대되고 있는 추세이다. 하지만 이 역시 고 성능의 X-선 동영상 구현을 위해서는 고 해상도 문제, 검출효율 문제, 대면적화의 어려움이 있다. 기존의 X-선 광 도전층의 증착은 증착 속도와 박막 품질에서 우수한 Evaporation 법이 사용되고 있다. 한편, 대면적에 균일한 박막형성이 가능하기 때문에 양산성에서 우월성을 가지는 sputtering법의 경우, 밀도가 높은 소결체 타겟의 제조가 힘들뿐만 아니라 증착 속도가 낮아 장시간 증착 시 낮은 소결밀도로 인한 타겟 Particle 영향으로 인해서 대 면적에 고품질의 박막을 형성하기가 어렵다. 하지만 최근 소결체 타겟 제조기술 발달과 함께, 대면적화와 장시간 증착에 대한 어려움이 해결되고 있어 sputtering 법을 이용한 고품질 박막 제조 기술의 연구가 시급한 실정이다. 본 연구에서는 $50{\times}50$ mm 크기의 non-alkali 유리기판(Corning E2000) 위에 Evaporation과 RF magnetron sputtering을 사용하여 다양한 기판온도 (RT, 100, 200, 300, $350^{\circ}C$)에서 $1{\mu}m$의 두께로 CdTe 박막을 증착하였다. RF magnetron sputtering의 경우 CdTe 단일 타겟(50:50 at%)을 사용하였으며 Base pressure는 약 $5{\times}10^{-6}$ Torr 이하까지 배기하였고, Working pressure는 약 $7.5{\times}10^{-3}$ Torr에서 증착하였다. 시편과 기판 사이의 거리는 70 mm이며 RF 파워는 150 W로 유지하였다. CdTe 박막의 미세구조는 X-ray diffraction (XRD, BRUKER GADDS) 및 Field Emission Scanning Electron Microscopy (FE-SEM, Hitachi)를 사용하여 측정하였다. 또한, 조건별 박막의 조성은 Energy Dispersive X-ray Spectroscopy (EDS, Horiba, 7395-H)을 사용하여 평가하였다. X-선 동영상 장치의 구현을 위해서는 CdTe 다결정 박막의 높은 흡수효율, 전하수집효율 및 SNR (Signal to Noise Ratio) 등의 물성이 요구된다. 이러한 물성을 나타내기 위해서는 CdTe 박막의 높은 결정성이 중요하다. Evaporation과 RF magnetron sputtering로 제작된 CdTe 박막은 공정 온도가 증가함에 따라 기판상에 도달하는 스퍼터 원자의 에너지 증가로 인해서 결정립이 성장한 것을 확인할 수 있었다. 따라서 CdTe 박막이 직접변환방식 고감도 X-ray 검출기 광도 전층 역할을 수행할 수 있을 것으로 기대된다.

  • PDF

Alq3박막의 광학특성과 전계 의존성 (Optical Characteristics and Electric Field Dependency of $Alq_3$ Thin Film)

  • 이청학;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1358-1360
    • /
    • 1998
  • In this paper, organic thin film LED(light emitting diode) having ITO glass/$Alq_3$/Al structure using an $Alq_3$ was fabricated by the vacuum evaporation and the absorbance, wave length, 1-V characteristics were investigated. Electroluminescence of green and wavelength of 510[nm] were observed in this device. We observed absorbance form 320[nm] to 430[nm] and knew unstability of $Alq_3$ material as light emitting device.

  • PDF

Pentacene을 이용한 diode의 제작 및 전기적 특성 (Fabrication and Electrical Characterization of Pentacene-based diodes)

  • 김대식;이용수;박재훈;최종선;강도열
    • 한국진공학회지
    • /
    • 제9권4호
    • /
    • pp.379-381
    • /
    • 2000
  • Organic materials have potential advantages to be utilized as semiconductors in field effect transistors and light emmiting diodes. Gold, Aluminium, Silver, Chromium and Indium are used by electrodes. Gold is ohmic contact and the others are schottky contact. In this study, Pentacene and various electrode materials were deposited by Organic Molecular Beam Deposition (OMBD) and vacuum evaporation respectively. Those films were photolithographically patterned for measurements. These devices showed no degration after a 15 days of storage in laboratory environment.

  • PDF

전계 펄스 인가 증발 방법을 이용한 탄소나노튜브의 구조적 특성 연구 (Structural characteristics of carbon nano tubes(CNTs) fabricated by Thermo-electrical Pulse Induced Evaporation)

  • 박혜윤;김현욱;송창은;지현준;최시경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.421-421
    • /
    • 2009
  • Since carbon nanotubes (CNTs) are discovered, tremendous attentions have been paid to these materials due to their unique mechanical, electrical and chemical properties. Thereupon, many methods to produce a large scale of CNTs have been contrived by many scientists and engineers. Thus the examination of growth mechanisms of CNTs, which is essential to produce CNTs in large scale, has been an attractive issue. Though many scientists have been strived to investigate and understand the growth mechanisms of CNTs, many of them still remain controversial or unclear. Here we introduce representative growth mechanisms of CNTs, based on broadly employed fabrication methods of CNTs. We applied Thermo-electrical Pulse Induced Evaporation (TPIE) method based on field and thermal evaporation to synthesis of CNTs. However TPIE method was originally devised to fabricate graphene sheets and $Ge_2Sb_2Te_5$ nanostructures. While performing TPIE experiments to synthesize graphene, we eventually found experimental results widely supporting the growth model of CNTs proposed already. We observed the procedure of growth of CNTs obtained by TPIE method through Transmission Electron Microscopy (TEM). We believe this study provides an experimental basis on understanding and investigating carbon-based nanomaterials.

  • PDF

Speedy Two-Step Thermal Evaporation Process for Gold Electrode in a Perovskite Solar Cell

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.235-240
    • /
    • 2018
  • We propose a speedy two-step deposit process to form an Au electrode on hole transport layer(HTL) without any damage using a general thermal evaporator in a perovskite solar cell(PSC). An Au electrode with a thickness of 70 nm was prepared with one-step and two-step processes using a general thermal evaporator with a 30 cm source-substrate distance and $6.0{\times}10^{-6}$ torr vacuum. The one-step process deposits the Au film with the desirable thickness through a source power of 60 and 100 W at a time. The two-step process deposits a 7 nm-thick buffer layer with source power of 60, 70, and 80 W, and then deposits the remaining film thickness at higher source power of 80, 90, and 100 W. The photovoltaic properties and microstructure of these PSC devices with a glass/FTO/$TiO_2$/perovskite/HTL/Au electrode were measured by a solar simulator and field emission scanning electron microscope. The one-step process showed a low depo-temperature of $88.5^{\circ}C$ with a long deposition time of 90 minutes at 60 W. It showed a high depo-temperature of $135.4^{\circ}C$ with a short deposition time of 8 minutes at 100 W. All the samples showed an ECE lower than 2.8 % due to damage on the HTL. The two-step process offered an ECE higher than 6.25 % without HTL damage through a deposition temperature lower than $88^{\circ}C$ and a short deposition time within 20 minutes in general. Therefore, the proposed two-step process is favorable to produce an Au electrode layer for the PSC device with a general thermal evaporator.

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.112-121
    • /
    • 2011
  • This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 1. 합금 wire의 직경 및 인가 전압의 영향 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part I. Effect of Wire Diameter and Applied Voltage)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.105-111
    • /
    • 2011
  • This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.

Direct Transfer Printing of Nanomaterials for Future Flexible Electronics

  • 이태윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Over the past decade, the major efforts for lowering the cost of electronics has been devoted to increasing the packaging efficiency of the integrated circuits (ICs), which is defined by the ratio of all devices on system-level board compared to the area of the board, and to working on a larger but cheaper substrates. Especially, in flexible electronics, the latter has been the favorable way along with using novel nanomaterials that have excellent mechanical flexibility and electrical properties as active channel materials and conductive films. Here, the tool for achieving large area patterning is by printing methods. Although diverse printing methods have been investigated to produce highly-aligned structures of the nanomaterials with desired patterns, many require laborious processes that need to be further optimized for practical applications, showing a clear limit to the design of the nanomaterial patterns in a large scale assembly. Here, we demonstrate the alignment of highly ordered and dense silicon (Si) NW arrays to anisotropically etched micro-engraved structures using a simple evaporation process. During evaporation, entropic attraction combined with the internal flow of the NW solution induced the alignment of NWs at the corners of pre-defined structures. The assembly characteristics of the NWs were highly dependent on the polarity of the NW solutions. After complete evaporation, the aligned NW arrays were subsequently transferred onto a flexible substrate with 95% selectivity using a direct gravure printing technique. As proof-of-concept, flexible back-gated NW field effect transistors (FETs) were fabricated. The fabricated FETs had an effective hole mobility of 0.17 $cm2/V{\cdot}s$ and an on/off ratio of ${\sim}1.4{\times}104$. These results demonstrate that our NW gravure printing technique is a simple and effective method that can be used to fabricate high-performance flexible electronics based on inorganic materials.

  • PDF