• Title/Summary/Keyword: Field Emission

Search Result 2,719, Processing Time 0.035 seconds

An Investigation on Gridline Edges in Screen-Printed Crystalline Silicon Solar Cells

  • Kim, Seongtak;Park, Sungeun;Kim, Young Do;Kim, Hyunho;Bae, Soohyun;Park, Hyomin;Lee, Hae-Seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.2-490.2
    • /
    • 2014
  • Since the general solar cells accept sun light at the front side, excluding the electrode area, electrons move from the emitter to the front electrode and start to collect at the grid edge. Thus the edge of gridline can be important for electrical properties of screen-printed silicon solar cells. In this study, the improvement of electrical properties in screen-printed crystalline silicon solar cells by contact treatment of grid edge was investigated. The samples with $60{\Omega}/{\square}$ and $70{\Omega}/{\square}$ emitter were prepared. After front side of samples was deposited by SiNx commercial Ag paste and Al paste were printed at front side and rear side respectively. Each sample was co-fired between $670^{\circ}C$ and $780^{\circ}C$ in the rapid thermal processing (RTP). After the firing process, the cells were dipped in 2.5% hydrofluoric acid (HF) at room temperature for various times under 60 seconds and then rinsed in deionized water. (This is called "contact treatment") After dipping in HF for a certain period, the samples from each firing condition were compared by measurement. Cell performances were measured by Suns-Voc, solar simulator, the transfer length method and a field emission scanning electron microscope. According to HF treatment, once the thin glass layer at the grid edge was etched, the current transport was changed from tunneling via Ag colloids in the glass layer to direct transport via Ag colloids between the Ag bulk and the emitter. Thus, the transfer length as well as the specific contact resistance decreased. For more details a model of the current path was proposed to explain the effect of HF treatment at the edge of the Ag grid. It is expected that HF treatment may help to improve the contact of high sheet-resistance emitter as well as the contact of a high specific contact resistance.

  • PDF

Strong Carrier Localization and Diminished Quantum-confined Stark Effect in Ultra-thin High-Indium-content InGaN Quantum Wells with Violet Light Emission

  • Ko, Suk-Min;Kwack, Ho-Sang;Park, Chunghyun;Yoo, Yang-Seok;Yoon, Euijoon;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.293-293
    • /
    • 2014
  • Over last decade InGaN alloy structures have become the one of the most promising materials among the numerous compound semiconductors for high efficiency light sources because of their direct band-gap and a wide spectral region (ultraviolet to infrared). The primary cause for the high quantum efficiency of the InGaN alloy in spite of high threading dislocation density caused by lattice misfit between GaN and sapphire substrate and severe built-in electric field of a few MV/cm due to the spontaneous and piezoelectric polarizations is generally known as the strong exciton localization trapped by lattice-parameter-scale In-N clusters in the random InGaN alloy. Nonetheless, violet-emitting (390 nm) conventional low-In-content InGaN/GaN multi-quantum wells (MQWs) show the degradation in internal quantum efficiency compared to blue-emitting (450 nm) MQWs owing higher In-content due to the less localization of carrier and the smaller band offset. We expected that an improvement of internal quantum efficiency in the violet region can be achieved by replacing the conventional low-In-content InGaN/GaN MQWs with ultra-thin, high-In-content (UTHI) InGaN/GaN MQWs because of better localization of carriers and smaller quantum-confined Stark effect (QCSE). We successfully obtain the UTHI InGaN/GaN MQWs grown via employing the GI technique by using the metal-organic chemical vapor deposition. In this work, 1 the optical and structural properties of the violet-light-emitting UTHI InGaN/GaN MQWs grown by employing the GI technique in comparison with conventional low-In-content InGaN/GaN MQWs were investigated. Stronger localization of carriers and smaller QCSE were observed in UTHI MQWs as a result of enlarged potential fluctuation and thinner QW thickness compared to those in conventional low-In-content MQWs. We hope that these strong carrier localization and reduced QCSE can turn the UTHI InGaN/GaN MQWs into an attractive candidate for high efficient violet emitter. Detailed structural and optical characteristics of UTHI InGaN/GaN MQWs compared to the conventional InGaN/GaN MQWs will be given.

  • PDF

TiO2 Nanotubular Formation on Grade II Pure Titanium by Short Anodization Processing (Grade II 순수 타이타늄의 단시간 양극산화에 의한 TiO2 나노튜브 형성)

  • Lee, Kwangmin;Kim, Yongjae;Kang, Kyungho;Yoon, Duhyeon;Rho, Sanghyun;Kang, Seokil;Yoo, Daeheung;Lim, Hyunpil;Yun, Kwiduk;Park, Sangwon;Kim, Hyun Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.240-245
    • /
    • 2013
  • Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate ($3mm{\times}4mm{\times}0.1mm$) were connected to an anode and cathode, respectively. The progressive formation of $TiO_2$ nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered $TiO_2$ nanotubes were formed at a potential of 20 V in a solution of 1M $H_3PO_4$ + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of $TiO_2$ nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The $TiO_2$ nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the $TiO_2$ nanotubes was gradually reduced. Short anodization processing for $TiO_2$ nanotubes of within 10 minutes was established.

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

Selective Pattern Growth of Silica Nanoparticles by Surface Functionalization of Substrates (기판 표면 기능화에 의한 실리카 나노입자의 선택적 패턴 성장)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.20-25
    • /
    • 2020
  • As nanoscience and nanotechnology advance, techniques for selective pattern growth have attracted significant attention. Silica nanoparticles (NPs) are used as a promising nanomaterials for bio-labeling, bio-imaging, and bio-sensing. In this study, silica NPs were synthesized by a sol-gel process using a modified Stöber method. In addition, the selective pattern growth of silica NPs was achieved by the surface functionalization of the substrate using a micro-contact printing technique of a hydrophobic treatment. The particle size of the as-synthesized silica NPs and morphology of selective pattern growth of silica NPs were characterized by FE-SEM. The contact angle by surface functionalization of the substrate was investigated using a contact angle analyzer. As a result, silica NPs were not observed on the hydrophobic surface of the OTS solution treatment, which was coated by spin coating. In contrast, the silica NPs were well coated on the hydrophilic surface after the KOH solution treatment. FE-SEM confirmed the selective pattern growth of silica NPs on a hydrophilic surface, which was functionalized using the micro-contact printing technique. If the characteristics of the selective pattern growth of silica NPs can be applied to dye-doped silica NPs, they will find applications in the bio imaging, and bio sensing fields.

Stability of TiN and WC Coated Dental Abutment Screw (TiN 및 WC코팅된 치과용 어버트먼트 나사의 안정성)

  • Son, M.K.;Lee, C.H.;Chung, C.H.;Jeong, Y.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.292-300
    • /
    • 2008
  • Dental implant system is composed of abutment, abutment screw and implant fixture connected with screw. The problems of loosening/tightening and stability of abutment screw depend on surface characteristics, like a surface roughness, coating materials and friction resistance and so on. For this reason, surface treatment of abutment screw has been remained research problem in prosthodontics. The purpose of this study was to investigate the stability of TiN and WC coated dental abutment screw, abutment screw was used, respectively, for experiment. For improving the surface characteristics, TiN and WC film coating was carried out on the abutment screw using EB-PVD and sputtering, respectively. In order to observe the coating surface of abutment screw, surfaces of specimens were characterized, using field emission scanning electron microscope(FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The stability of TiN and WC coated abutment screw was evaluated by potentiodynamic, and cyclic potentiodynamic polarization method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion potential of TiN coated specimen was higher than those of WC coated and non-coated abutment screw. Whereas, corrosion current density of TiN coated screws was lower than those of WC coated and non-coated abutment screw. The stability of screw decreased as following order; TiN coating, WC coating and non-coated screw. The pitting potentials of TiN and WC coated specimens were higher than that of non-coated abutment screw, but repassivation potential of WC coated specimen was lower than those of TiN coated and non-coated abutment screws due to breakdown of coated film. The degree of local ion dissolution on the surface increased in the order of TiN coated, non-coated and WC coated screws.

Influence of thickness ratio and substrate bias voltage on mechanical properties of AlCrN/AlCrSiN double-layer coating (두께 비율과 기판 바이어스 전압이 AlCrN/AlCrSiN 이중층 코팅의 기계적 특성에 미치는 영향)

  • Kim, Hoe-Geun;Ra, Jeong-Hyeon;Lee, Sang-Yul;Han, Hui-Deok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.162-162
    • /
    • 2017
  • AlCrN 코팅은 높은 경도, 낮은 표면 조도 등의 상온에서의 우수한 기계적 특성 이외에 고온에서 안정한 합금상의 형성으로 인하여 우수한 내열성을 보이는 코팅이며, Si을 첨가하여 나노복합구조를 갖는 AlCrSiN 코팅은 고경도 특성을 나타내는 나노결정립과 고내열성을 나타내는 $Si_3N_4$ 비정질이 동시에 존재함으로써 뛰어난 고온 특성까지 보유하여 공구 코팅으로의 적용 가능성이 크다. 본 연구에서는, 가혹화된 공구사용 환경 대응 하는 더욱 우수한 내마모성 및 내열성을 보이는 코팅막을 개발하기 위해 AlCrN/AlCrSiN 이중층 코팅을 합성하였다. 합성된 코팅의 구조 및 물성을 분석하기 위해 field emission scanning electron microscopy(FE-SEM), nano-indentation, atomic force microscopy(AFM) 및 ball-on-disk wear tester를 사용하였다. 내열성을 확인하기 위하여 코팅을 furnace에 넣어 500, 600, 700, 800, 900도에서 30분 동안 annealing한 후에 nano-indentation을 사용하여 경도를 측정을 하였다. 5:5, 7:3, 9:1의 두께 비율로 AlCrN/AlCrSiN 이중층 코팅을 합성하였으며 모든 코팅의 두께는 $3{\mu}m$로 제어되었다. AlCrN 코팅층의 두께가 증가할수록, 이중층 코팅의 경도 및 내마모성은 점차 향상되었지만 코팅의 밀착력은 감소하였다. 일반적으로 AlCrN 코팅은 상대적으로 높은 잔류응력을 갖고 있으므로, AlCrN 층의 두께비율이 증가함에 따라 코팅내의 잔류응력이 높아져 코팅의 경도는 증가하고 밀착특성은 낮아진 것으로 판단된다. AlCrSiN 상부층 공정시 기판 바이어스 전압을 -50 ~ -200V 로 증가시키면서 이중층 코팅을 합성하였다. XRD 분석 결과, 공정 바이어스 전압이 증가함에 따라 AlCrSiN 상부층은 점차 비정질화 되었고, 코팅의 경도와 표면 특성이 향상되는 것을 확인하였다. 이러한 특성 향상은 높은 바이어스 인가가 이온 충돌효과의 증가를 야기시켰으, 이로 인해 치밀한 코팅층 합성에 의한 결과로 판단된다. AlCrN/AlCrSiN 이중층 코팅을 어닐링 한 후 경도 분석 결과, -150, -200V에서 합성한 코팅은 900도 이상에서 26GPa 이상의 높은 경도를 보인 것으로 보아 우수한 내열성을 갖는 것으로 확인 되었다. 이는 AlCrSiN 상부층의 높은 Si 함량 (11at.%) 으로 인한 충분한 $Si_3N_4$ 비정질상의 형성과, 고바이어스 인가로 인한 AlCrN 결정상과 $Si_3N_4$ 비정질상의 고른 분배가 코팅의 내열성을 향상시키는데 기여를 한 결과로 판단된다.

  • PDF

Effect of Various Interlayer Deposition on Room Temperature and High Temperature Properties of CrAlN Coatings (다양한 중간층 증착이 CrAlN 코팅의 상온 및 고온 특성에 미치는 효과에 관한 연구)

  • Kim, Hoe-Geun;Ra, Jeong-Hyeon;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.143-143
    • /
    • 2017
  • CrAlN 코팅은 높은 경도, 낮은 표면 조도 등의 상온에서의 우수한 기계적 특성 이외에 고온에서 안정한 합금상의 형성으로 인하여 우수한 내산화성 및 내열성을 보유하여 공구 코팅으로의 적용 가능성이 크다. 그러나 최근 공구사용 환경의 가혹화로 인하여 코팅의 내마모성 및 내열성 등의 물성 향상을 통한 공구의 수명 향상이 필요시 되고 있으며, 다양한 코팅 물질을 활용하여 다층 코팅을 합성함으로써 난삭재용 공구 코팅의 물성을 높이는 연구들이 진행되고 있다. 본 연구에서는 CrAlN 코팅과 WC-Co 6wt.% 모재 사이에 CrZrN, CrN, CrN/CrZrSiN 등의 중간층을 합성하여 CrAlN 코팅의 상온 및 고온 특성을 향상시키는 연구가 진행되었다. 합성된 코팅의 구조 및 물성을 분석하기 위해 field emission scanning electron microscopy(FE-SEM), nano-indentation, atomic force microscopy(AFM) 및 ball-on-disk wear tester를 사용하였다. 코팅의 고온 특성을 확인하기 위해 코팅을 furnace에 넣어 공기중에서 30분 동안 annealing 한 후에 nano-indentation을 사용하여 경도를 측정하였고, $500^{\circ}C$ annealing 코팅의 표면 조도 분석 및 $500^{\circ}C$에서 마찰마모시험을 실시하였다. CrAlN 코팅의 상온 특성을 분석한 결과, 모든 코팅의 경도(35.5-36.2 GPa)와 탄성계수(424.3-429.2 GPa)는 중간층의 종류에 상관없이 비슷한 값을 보인 것으로 확인됐다. 그러나, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅의 마찰계수는 0.33로 CrZrN 중간층을 증착한 CrAlN 코팅의 마찰계수(0.41)에 비해 향상된 값 보였으며, 코팅의 마모율 및 마모폭도 비슷한 경향을 보인 것으로 보아 코팅의 내마모성이 향상된 것으로 판단된다. 이것은 중간층의 H/E ratio가 코팅의 내마모성에 미치는 영향에 의한 결과로 사료된다. H/E ratio는 파단시의 최대 탄성 변형율로써, 모재/중간층/코팅의 H/E ratio 구배에 따라 코팅 내의 응력의 완화 정도가 변하게 된다. WC 모재 (H/E=0.040)와 CrAlN 코팅(H/E=0.089) 사이에서 CrN, CrZrSiN 중간층의 H/E ratio는 각각 0.076, 0.083 으로 모재/중간층/코팅의 H/E ratio 구배가 점차 증가함을 확인 할 수 있었고, 일정 응력이 지속적으로 가해지면서 진행되는 마모시험중에 CrN과 CrZrSiN 중간층이 WC와 CrAlN 코팅 사이에서 코팅 내부의 응력구배를 완화시키는 역할을 함으로써 CrAlN 코팅의 내마모성이 향상된 것으로 판단된다. 내열성 시험 결과, CrN/CrZrSiN 중간층을 증착한 코팅은 $1,000^{\circ}C$까지 약 28GPa의 높은 경도를 유지한 것으로 확인 되었다. $500^{\circ}C$ annealing 후 진행된 표면 조도와 마모시험 결과, 모든 코팅의 조도 값 및 마찰계수는 상온 값에 비해 증가하였으며 CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅의 변화량이 가장 낮은 값을 보였다. 이는 CrZrSiN 중간층 내에 존재하는 $SiN_x$ 비정질상이 고온 annealing시에 산소 차폐막 역할을 하여, 코팅내의 잔류 산소에 의한 산화작용을 효과적으로 방지함으로써 코팅의 고온 특성이 향상된 것으로 판단된다.

  • PDF

CHANGES OF ABUTMENT SCREW AFTER REPEATED CLOSING AND OPENING

  • Kim Hee-Jung;Chung Chae-Heon;Oh Sang-Ho;Choi Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.628-640
    • /
    • 2004
  • Statement of problem. Wear as a result of repeated closing/opening cycles may decrease the friction coefficient of screw head, threads, and other mating components and, consequently, resistance to opening gradually decreases. It may cause screw loosening, which is one of the most common failures in implant prosthesis. Purpose. The purpose of this study is to evaluate the changes on the head and thread surface of the abutment screws after repeated closing and opening through the examination of tested screws in SEM(scanning electron microscope). Materials and methods. Five species of abutments were selected (3i-three, Avana-two) respectively by two pieces. The implant fixtures were perpendicularly mounted in liquid unsaturated polyesther(Epovia, Cray Valley Inc.) with dental surveyor. Each abutment was secured to the implant fixture by each abutment screw with recommended torque value using a digital torque controller. The abutment screws were repeatedly tightened and removed 20 times with a digital controller. FESEM (field emission scanning electron microscope, Netherland, Phillips co., model:XL 30 SFEG) was used to observe changes of each part caused by repeatedly closing/opening expeiment. First, the Photomicrographs of pre-test screws provided by each manufacturer were taken. The changes of each screw were investigated after every fifth closing and opening experiment with FESEM. Scaning electron microscope photomicrographs of each screw were taken four times. Results. As the number of closing and opening was increased, the wear or distortion of hexed or squared slot that contacted with the driver tip was more severely progressed. Wear or distortion of hexed slot was more severe than that of squared slot and it was more remarkable in the titanium screw than in the gold screw. All the tested screws showed that the width in the crest of their screw thread decreased gradually as the test was proceeded. Conclusions. Conclusively, we recommend the clinical use of gold screw, a periodic exchanges of abutment screws and avoiding repeated closing/opening unnecessarily. We also suggest a more careful manipulation of the abutment screw and screw-driver and using of abutment screw with an acute-angled slot design rather than an obtuse-angled one. Finally, it is suggested that the new slot design and the surface treatment for enduring wear or distortion should be devised.

Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones

  • Lim, Ki-Taek;Kim, Jin-Woo;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: The aim of this research was to develop and evaluate natural hydroxyapatite (HA) ceramics produced from the heat treatment of pig bones. Methods: The properties of natural HA ceramics produced from pig bones were assessed in two parts. Firstly, the raw materials were characterized. A temperature of $1,200^{\circ}C$ was chosen as the calcination temperature. Fine bone powders (BPs) were produced via calcinations and a milling process. Sintered BPs were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and a 2-year in vitro degradability test. Secondly, an indirect cytotoxicity test was conducted on human osteoblast-like cells, MG63, treated with the BPs. Results: The average particle size of the BPs was $20{\pm}5{\mu}m$. FE-SEM showed a non-uniform distribution of the particle size. The phase obtained from XRD analysis confirmed the structure of HA. Elemental analysis using XRF detected phosphorus (P) and calcium (Ca) with the Ca/P ratio of 1.6. Functional groups examined by FTIR detected phosphate ($PO{_4}^{3-}$), hydroxyl ($OH^-$), and carbonate ($CO{_3}^{2-}$). The EDX, XRF, and FTIR analysis of BPs indicated the absence of organic compounds, which were completely removed after annealing at $1,200^{\circ}C$. The BPs were mostly stable in a simulated body fluid (SBF) solution for 2 years. An indirect cytotoxicity test on natural HA ceramics showed no threat to the cells. Conclusions: In conclusion, the sintering temperature of $1,200^{\circ}C$ affected the microstructure, phase, and biological characteristics of natural HA ceramics consisting of calcium phosphate. The Ca-P-based natural ceramics are bioactive materials with good biocompatibility; our results indicate that the prepared HA ceramics have great potential for agricultural and biological applications.