• Title/Summary/Keyword: Field Emission

Search Result 2,718, Processing Time 0.026 seconds

Electrical characteristics of lateral poly0silicon field emission triode using LOCOS process

  • Lee, Jae-Hoon;Lee, Myoung-Bok;Park, Dong-Il;Ham, Sung-Ho;Lee, Jong-Hyun;Lee, Jung-Hee
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 1999
  • Using the LOCOS process, we have fabricated the lateral type polysilicon field emission triodes with poly-Si/oxide/Si structure and investigated their current-voltage characteristics for three biasing modes of operation. The fabricated devices exhibit excellent electrical performances such as a relatively low turn-on anode voltage of 14 V at VGC = 0V, a stable and high emission current of 92${\mu}$A/triode over 90 hours, a small gate leakage current of 0.23 ${\mu}$A/triode and an outstanding transconductance of 57${\mu}$S/5triodes at VGC = 5V and VAC = 26V. these superior electrical operation is believed to be due to a large field enhancement effect, which is related to the sharp cathode tips produced by the LOCOS process as well as the high aspect ratio (height /radius ) of the cathode tip end.

  • PDF

XPS Investigation and Field Emission Property of the Ar Plasma Processed Carbon Nanotube Films

  • Lee, Sun-Woo;Lee, Boong-Joo;Oda, Tetsuji
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.52-56
    • /
    • 2008
  • Carbon nanotube films were fabricated by the catalytic CVD method. Plasma processed time effects on the field emission property were studied. The atomic structure was observed by using X-ray photoelectron spectroscopy (XPS). The surface composition changes were observed on the plasma processed CNT films. The O1s/C1s signal ratio and the Fls/Cls signal ratio changed from 1.1 % to 24.65 % and from 0 % to 3.1 % with plasma process time, respectively. We could guess it from these results that the Ar plasma process could change the surface composition effectively. In the case of the original-CNT film, no carbon shift was observed. In the case of the Ar plasma processed CNT films, however the oxygen related carbon shifts were observed. This oxygen related carbon shift at higher binding energy implies the increment of amount of the oxygen. It's possible that the increment of these bonds between carbon and oxygen results in the improvement of field emission performance.

Field-emission characteristics of carbon nanotubes: The effect of catalyst preparation (촉매처리 방법에 따른 탄소 나노튜브의 전계방출 특성)

  • Park, Chang-Kyun;Yun, Sung-Jun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.38-39
    • /
    • 2006
  • We present experimental results that regard the effects of catalyst preparation on the structural and field-emissive properties of CNTs. The CNTs used in this research have been synthesized using the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method. Catalyst materials (such as Ni, Co, and Invar 426) are varied and deposited on buffer films by RF magnetron sputtering. Prior to growth of CNTs, $NH_3$ plasma etching has also been performed with varying plasma etching time and power. For all the CNTs grown, nanostructures and morphologies are analyzed using Raman spectroscopy and FESEM, in terms of buffer films, catalyst materials, and pre-treatment conditions. Furthermore, the field electron-emission of CNTs are measured and characterized in terms of the catalyst preparation environments. The CNTs grown on Nicatalyst layer would be more effectual for enhancing the growth rate and achieving the vertical-alignment of CNTs rather than other buffer materials from results of SEM study. The crystalline graphitic structure of CNTs is improved as the catalyst dot reaches a critical size. Also, the field-emission result shows that the CNTs using Ni catalyst would be more favorable for improving electron-emission capabilities of CNTs compared with other samples.

  • PDF

Preparation of Bucky Paper using Single-walled Carbon Nanotubes Purified through Surface Functionalization and Investigation of Their Field Emission Characteristics (기능화에 의한 단일벽 탄소나노튜브 정제 및 페이퍼 제조와 전계방출 특성 연구)

  • Goak, Jeung-Choon;Lee, Seung-Hwan;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • Single-walled carbon nanotubes (SWCNTs) were currently produced together with some contaminants such as a metallic catalyst, amorphous carbon, and graphitic nanoparticles, which should be sometimes purified for their applications. This study aimed to develop efficient, scalable purification processes but less harmful to SWCNTs. We designed three-step purification processes: acidic treatment, surface functionalization and soxhlet extraction, and heat treatment. During the soxhlet extraction using tetrahydrofuran, specifically, carbon impurities could be easily expelled through a glass thimble filter without any significant loss of CNTs. Finally, SWCNTs were left as a bulky paper on the filter through membrane filtration. Vertically aligned SWCNTs on one side of bulky paper were well developed in a speparation from the filter paper, which were formed by being sucked through the filter pores during the pressurized filtration. The bucky paper showed a very high peak current density of field emission up to $200\;mA/cm^2$ and uniform field emission images on phosphor, which seems very promising to be applied to vacuum microelectronics such as microwave power amplifiers and x-ray sources.

Prediction of Ammonia Emission Rate from Field-applied Animal Manure using the Artificial Neural Network (인공신경망을 이용한 시비된 분뇨로부터의 암모니아 방출량 예측)

  • Moon, Young-Sil;Lim, Youngil;Kim, Tae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • As the environmental pollution caused by excessive uses of chemical fertilizers and pesticides is aggravated, organic farming using pasture and livestock manure is gaining an increased necessity. The application rate of the organic farming materials to the field is determined as a function of crops and soil types, weather and cultivation surroundings. When livestock manure is used for organic farming materials, the volatilization of ammonia from field-spread animal manure is a major source of atmospheric pollution and leads to a significant reduction in the fertilizer value of the manure. Therefore, an ammonia emission model should be presented to reduce the ammonia emission and to know appropriate application rate of manure. In this study, the ammonia emission rate from field-applied pig manure is predicted using an artificial neural network (ANN) method, where the Michaelis-Menten equation is employed for the ammonia emission rate model. Two model parameters (total loss of ammonia emission rate and time to reach the half of the total emission rate) of the model are predicted using a feedforward-backpropagation ANN on the basis of the ALFAM (Ammonia Loss from Field-applied Animal Manure) database in Europe. The relative importance among 15 input variables influencing ammonia loss is identified using the weight partitioning method. As a result, the ammonia emission is influenced mush by the weather and the manure state.

Application of Field and Laboratory Emission Cell (FLEC) to Determine Formaldehyde and VOCs Emissions from Wood-Based Composites

  • Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.24-37
    • /
    • 2007
  • The Korean Ministry of Environment started controlling indoor air quality (IAQ) in 2004 through the introduction of a law regulating the use of pollutant emitting building materials. The use of materials with formaldehyde emission levels above $1.25 mg/m^2{\cdot}h$ (JIS A 1901, small chamber method) has been prohibited. This level is equivalent to the $E_2$ grade ($>5.0mg/{\ell}$) of the desiccator method (JIS A 1460). However, the $20{\ell}$ small chamber method requires a 7-day test time to obtain the formaldehyde and volatile organic compound (VOC) emission results from solid building interior materials. As a approach to significantly reduce the test time, the field and laboratory emission cell (FLEC) has been proposed in Europe with a total test time less than one hour. This paper assesses the reproducibility of testing formaldehyde and TVOC emissions from wood-based composites such as medium density fiberboard (MDF), laminate flooring, and engineered flooring using three methods: desiccator, perforator and FLEC. According to the desiccator and perforator standards, the formaldehyde emission level of each flooring was ${\le}E_1$ grade. The formaldehyde emission of MDF was $3.48 mg/{\ell}$ by the desiccator method and 8.57 g/100 g by the perforator method. To determine the formaldehyde emission, the peak areas of each wood-based composite were calculated from aldehyde chromatograms obtained using the FLEC method. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde and benzaldehyde were detected as aldehyde compounds. The experimental results indicated that MDF emitted chloroform, benzene, trichloroethylene, toluene, ethylbenzene, m,p-xy-lene, styrene, and o-xylene. MDF emitted significantly greater amounts of VOCs than the floorings did.

Comparative study of greenhouse gas emission from coastal and offshore gillnet and trap fisheries by field research (연근해 자망과 통발 어업의 온실가스 배출량 현장실측 연구)

  • LEE, Seok-Hyung;KIM, Hyunyoung;YANG, Yongsu;KANG, Da-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • Fossil fuel combustion during fishing activities is a major contributor to climate changes in the fishing industry. The Tier1 methodology calculation and on-site continuous measurements of the greenhouse gas were carried out through the use of fuel by the coastal and offshore gillnet (blue crabs and yellow croaker) and trap (small octopus and red snow crab) fishing boats in Korea. The emission comparison results showed that the field measurements are similar to or slightly higher than the Tier1 estimates for coastal gillnet and trap. In offshore gillnet and trap fisheries, Tier1 estimate of greenhouse gases was about $1,644-13,875kg\;CO_2/L$, which was more than the field measurement value. The $CO_2$ emissions factor based on the fuel usage was $2.49-3.2kg\;CO_2/L$ for coastal fisheries and $1.46-2.24kg\;CO_2/L$ for offshore fisheries. Furthermore, GHG emissions per unit catch and the ratio of field measurement and Tier1 emission estimate were investigated. Since the total catch of coastal fish was relatively small, the emission per unit catch in coastal fisheries was four to eight times larger. The results of this study could be used to determine the baseline data for responding to changes in fisheries environment and reducing greenhouse gas emission.

Improvement of Ammonia Emission Inventory Estimation Methodology for Fertilizer Application in the Agricultural Sector (농업부문 비료사용 농경지의 암모니아 배출량 산정방법 개선)

  • Choi, Hanmin;Hyun, Junge;Kim, You Jin;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • Ammonia is main precursor gas of secondary particulate matter and contributes almost 78% of total ammonia emission from the agricultural sector in Korea. The current method of estimating ammonia emission from fertilizer application, which contributes 7% of the total emission, has high uncertainty and needs to be improved to better predict PM2.5 concentration. In this study, we suggest an improvement method for ammonia emission quantification from fertilizer application. The first improvement was in the emission factor of NPK fertilizer by conducting a field study to verify the currently used factor. The improved NPK emission factor of 52.2 kg NH ton-1N was confirmed by comparing with the value from the EEA (European Environment Agency) and adjusting the value for the Korean climate and soil conditions. We also improved the amount of fertilizer usage by including the sales amount to the fertilizer supply amount of the Korean Farmers Association, increasing total fertilizer usage by 39.8%. As the statistical data on fertilizer supply and sales are compiled yearly, we estimated monthly emission of ammonia by considering cultivated areas and timing of fertilization for each crop. In summary, we suggest a novel and practical method to improve estimation methodology of ammonia emission from the field of fertilizer application: 1) emission factor of NPK fertilizer was reconfirmed; 2) total amount of fertilizer use was revised considering fertilizer sales; and 3) monthly emission of ammonia was realized by considering different crop practices. A bottom-up approach to compile activity data is needed to increase the estimation accuracy of monthly emission of ammonia, which is very helpful for predicting PM2.5 concentration.

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures Formed by Composite Plating Method (복합도금법으로 형성된 탄소나노튜브-구리 복합구조물의 전계방출특성)

  • Sung Woo-Yong;Kim Wal-Jun;Lee Seung-Min;Yoo Hyeong-Suk;Lee Ho-Young;Joo Seung-Ki;Kim Yong-Hyup
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.163-166
    • /
    • 2005
  • Carbon nanotube-copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes (MWNTs) synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field was about $3.0\;V/{\mu}m$ with the current density of $0.1\;{\mu}A/cm^2.$ We observed relatively uniform emission characteristics as well as stable emission current Carbon nanotube-copper composite plating method is efficient and it has no intrinsic limit on the deposition area. Moreover, it gives strong adhesion between emitters and an electrode. Therefore, we recommend that carbon nanotube-copper composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

The Ballast for Field Emission Lamp with CNT Emitter (CNT를 이용한 무수은 면광원 안정기 개발)

  • Park, Dong-Hyuck;Ha, Seok-Jin;Jung, Hye-Man;Kim, Jong-Hyun;Baek, Ju-Won;Yoo, Dong-Wook;Song, Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • Hybrid ballast for field emission lamp with CNT (carbon nano tube) emitter is proposed. Hybrid ballast consists of a high voltage dc part and hi-polar pulse generation part. Field emission lamp with CNT lamp is composed of three electrodes (anode, gate, and cathode). High voltage dc part is for anode and gate and hi-polar pulse generation part is for gate and cathode in CNT triode respectively. The experimental results demonstrate that the proposed topology is good for driving CNT lamp. To protect the lamp and ballast, OCP (Over Current Protection), OVP (Over Voltage Protection), and OTP (Over Temperature Protection) are added and the experimental results demonstrate that the proposed method is good for driving field emission lamp with CNT emitter.