• Title/Summary/Keyword: Field Complexity

Search Result 606, Processing Time 0.024 seconds

Conflict Detection for Multi-agent Motion Planning using Mathematical Analysis of Extended Collision Map (확장충돌맵의 수학적 분석을 이용한 다개체의 충돌탐지)

  • Yoon, Y.H.;Choi, J.S.;Lee, B.H.
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.234-241
    • /
    • 2007
  • Effective tools which can alleviate the complexity and computational load problem in collision-free motion planning for multi-agent system have steadily been demanded in robotics field. To reduce the complexity, the extended collision map (ECM) which adopts decoupled approach and prioritization is already proposed. In ECM, the collision regions which represent the potential collision of robots are calculated using the computational power; the complexity problem is not resolved completely. In this paper, we propose a mathematical analysis of the extended collision map; as a result, we formulate the collision region as an equation with 5-8 variables. For mathematical analysis, we introduce realistic assumptions as follows; the path of each robot can be approximated to a straight line or an arc and every robot moves with uniform velocity or constant acceleration near the intersection between paths. Our result reduces the computational complexity in comparison with the previous result without losing optimality, because we use simple but exact equations of the collision regions. This result can be widely applicable to coordinated multi-agent motion planning.

  • PDF

Modified three step search using adjacent block's motion vectors (인접한 블럭의 움직임 벡터를 이용한 수정된 삼단계 움직임 추정 기법)

  • 오황석;백윤주;이흥규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.2053-2061
    • /
    • 1997
  • The motion comensated video coding technology is very improtant to compress video signal since it reduces the temporal redundancies in successive frames. But the computational complexity of the motion estimation(ME) is too enormous to use in the area of real-time and/or resolution video processing applications. To reduce the complexity of ME, fast search algoritjms and hardware design methods are developed. Especially, the three step search(TSS) is well known method which shows stable performance in various video sequences. And other variations of TSS are developed to get better performance andto reduce the complexity. In this paepr, we present the modified TSS using neighboring block's motion vectors to determine first step motion vector in TSS. The presented method uses the correlation of the adjacent blocks with same motion field. The simualtion resutls show that it has a good MAE performance and low complexity comparing with original TSS.

  • PDF

Modulation Recognition of MIMO Systems Based on Dimensional Interactive Lightweight Network

  • Aer, Sileng;Zhang, Xiaolin;Wang, Zhenduo;Wang, Kailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3458-3478
    • /
    • 2022
  • Automatic modulation recognition is the core algorithm in the field of modulation classification in communication systems. Our investigations show that deep learning (DL) based modulation recognition techniques have achieved effective progress for multiple-input multiple-output (MIMO) systems. However, network complexity is always an additional burden for high-accuracy classifications, which makes it impractical. Therefore, in this paper, we propose a low-complexity dimensional interactive lightweight network (DilNet) for MIMO systems. Specifically, the signals received by different antennas are cooperatively input into the network, and the network calculation amount is reduced through the depth-wise separable convolution. A two-dimensional interactive attention (TDIA) module is designed to extract interactive information of different dimensions, and improve the effectiveness of the cooperation features. In addition, the TDIA module ensures low complexity through compressing the convolution dimension, and the computational burden after inserting TDIA is also acceptable. Finally, the network is trained with a penalized statistical entropy loss function. Simulation results show that compared to existing modulation recognition methods, the proposed DilNet dramatically reduces the model complexity. The dimensional interactive lightweight network trained by penalized statistical entropy also performs better for recognition accuracy in MIMO systems.

Stability and Complexity of Static Output Feedback Controllers (고정형 출력 궤환 제어기의 안정성과 복잡도)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.325-335
    • /
    • 2018
  • Limited access to state information in the design of a feedback controller has brought out a significant amount of research on the design of an output feedback controller. Despite its long endeavor to find an optimal one, it is still an open problem. Thus, we focus on the comparison of existing states of arts in the design of a static output feedback controller in terms of stability and complexity so as to find further research direction in this field. To this end, we present eight design methods in a unified presentation. We also provide the complete description of algorithms which can be applicable to any system configuration. Stability performance and complexity in terms of processing time are evaluated through numerical simulations. Simulation results show that the algebraic controller (AC) algorithm [20] has the smallest complexity while the scaling linear matrix inequality (SLMI) algorithm [18] seems to achieve the best stability in most cases with much higher complexity.

Field measurement study on snow accumulation process around a cube during snowdrift

  • Wenyong Ma;Sai Li;Xuanyi Zhou;Yuanchun Sun;Zihan Cui;Ziqi Tang
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2023
  • Due to the complexity and difficulty in meeting the multiphase flow complexity, similarity, and multiscale characteristics, the mechanism of snow drift is so complicated that the snow deposition prediction is still inaccurate and needs to be far improved. Meanwhile, the validation of prediction methods is also limited due to a lack of field-measured data about snow deposition. To this end, a field measurement activity about snow deposition around a cube with time was carried out, and the snow accumulation process was measured under blowing snow conditions in northwest China. The maximum snow depth, snow profile, and variation in snow depth around the cube were discussed and analyzed. The measured results indicated three stages of snow accumulation around the cube. First, snow is deposited in windward, lateral and leeward regions, and then the snow depth in windward and lateral regions increases. Secondly, when the snow in the windward region reaches its maximum, the downwash flow erodes the snow against the front wall. Meanwhile, snow range and depth in lateral regions have a significant increase. Thirdly, a narrow road in the leeward region is formed with the increase in snow range and depth, which results in higher wind speed and reforming snow deposition there. The field measurement study in this paper not only furthers understanding of the snow accumulation process instead of final deposition under complex conditions but also provides an important benchmark for validating prediction methods.

Parallel Synthesis Algorithm for Layer-based Computer-generated Holograms Using Sparse-field Localization

  • Park, Jongha;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.672-679
    • /
    • 2021
  • We propose a high-speed layer-based algorithm for synthesizing computer-generated holograms (CGHs), featuring sparsity-based image segmentation and computational parallelism. The sparsity-based image segmentation of layer-based three-dimensional scenes leads to considerable improvement in the efficiency of CGH computation. The efficiency enhancement of the proposed algorithm is ascribed to the field localization of the fast Fourier transform (FFT), and the consequent reduction of FFT computational complexity.

Design of Finite Field Multiplier for Elliptic Curve Cryptosystems (타원곡선 암호화 시스템을 위한 유한필드 곱셈기의 설계)

  • Lee, Wook;Lee, Sang-Seol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2576-2578
    • /
    • 2001
  • Elliptic curve cryptosystems based on discrete logarithm problem in the group of points of an elliptic curve defined over a finite field. The discrete logarithm in an elliptic curve group appears to be more difficult than discrete logarithm problem in other groups while using the relatively small key size. An implementation of elliptic curve cryptosystems needs finite field arithmetic computation. Hence finite field arithmetic modules must require less hardware resources to archive high performance computation. In this paper, a new architecture of finite field multiplier using conversion scheme of normal basis representation into polynomial basis representation is discussed. Proposed architecture provides less resources and lower complexity than conventional bit serial multiplier using normal basis representation. This architecture has synthesized using synopsys FPGA express successfully.

  • PDF

AN OVERLAPPING DOMAIN DECOMPOSITION METHOD WITH A VERTEX-BASED COARSE SPACE FOR RAVIART-THOMAS VECTOR FIELDS

  • Duk-Soon Oh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • In this paper, we propose a two-level overlapping domain decomposition preconditioner for three dimensional vector field problems posed in H(div). We introduce a new coarse component, which reduces the computational complexity, associated with the coarse vertices. Numerical experiments are also presented.

Effects of Uncertainty and Depression on the Quality of Life of Elderly People (노인의 불확실성과 우울이 삶의 질에 미치는 영향)

  • Kim, Hyun-Seung;Cho, Sung-Hyoun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.209-219
    • /
    • 2022
  • Purpose : The purpose of this study was two-fold: to investigate the effects of uncertainty and depression on the quality of life (QoL) of elderly people with chronic diseases and to provide basic data on the physical, emotional, and psychological factors affecting their QoL in the field of physical therapy. Methods : A questionnaire covering uncertainty, depression, and QoL was distributed among 320 elderly people. Pearson's correlation analysis was performed to examine the correlation between uncertainty (ambiguity, complexity, inconsistency, and unpredictability), depression, and QoL (physical, psychological, social, and living environment domains) of the respondents; furthermore, multiple regression analysis was performed to identify the factors affecting the QoL of the respondents with a chronic disease. Results : The sub-factors of uncertainty and QoL-"complexity and social domain" (r=-.295, p<.001), "complexity and living environment domain" (r=-.302, p<.001), and "inconsistency and living environment domain" (r=-.360, p<.001)-showed a negative (-) correlation, as did depression and the sub-factors of QoL-"depression and physical domain" (r=-.782, p<.001), "depression and psychological domain" (r=-.876, p<.001), "depression and social domain" (r=-.668, p<.001), and "depression and living environment domain" (r=-.731, p<.001). The factors affecting QoL were complexity (𝛽=-.122, p<.001), inconsistency (𝛽=-.102, p=.002), unpredictability (𝛽=.112, p<.001), and depression (𝛽=-.850, p<.001). The relative influence of the independent variables was in the order of depression, complexity, unpredictability, and inconsistency, and the explanatory power was 77.1 % (F=215.853, p<.001). Conclusion : It is important to help the elderly with chronic diseases reduce the negative impact on their quality of life by helping them gain support from their families and medical professionals and by increasing their understanding through communication so that they can transition from negative emotions to positive emotions of opportunity.

Practical Implementation and Performance Evaluation of Random Linear Network Coding (랜덤 선형 네트워크 코딩의 실용적 설계 및 성능 분석)

  • Lee, Gyujin;Shin, Yeonchul;Koo, Jonghoe;Choi, Sunghyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1786-1792
    • /
    • 2015
  • Random linear network coding (RLNC) is widely employed to enhance the reliability of wireless multicast. In RLNC encoding/decoding, Galois Filed (GF) arithmetic is typically used since all the operations can be performed with symbols of finite bits. Considering the architecture of commercial computers, the complexity of arithmetic operations is constant regardless of the dimension of GF m, if m is smaller than 32 and pre-calculated tables are used for multiplication/division. Based on this, we show that the complexity of RLNC inversely proportional to m. Considering additional overheads, i.e., the increase of header length and memory usage, we determine the practical value of m. We implement RLNC in a commercial computer and evaluate the codec throughput with respect to the type of the tables for multiplication/division and the number of original packets to encode with each other.