• Title/Summary/Keyword: Fibroblast cells

Search Result 1,091, Processing Time 0.026 seconds

Puerariae Radix Induces Angiogenesis in vitro and in vivo

  • Choi, Do-Young;Kang, Jung-Won;Cho, Eun-Mi;Lee, Jae-Dong;Huh, Jeong-Eun;Yang, Ha-Ru;Baek, Yong-Hyeon;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.171-180
    • /
    • 2005
  • Background & Objective : Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine whether Puerariae radix could induce angiogenic activity in human umbilical vein endothelial cells (HUVECs). Methods: The angiogenic activity of Puerariae radix were evaluated by using BrdU assay, chemotactic migration assay, tube formation assay, measurement of bFGF in HUVECs, and Matrigel plug assay in mice. Results : Puerariae radix significantly increased HUVECs proliferation in a dose-dependent manner. In addition, Puerariae radix increased migration and tube-like formation in HUVECs. Interestingly,the expression of basic fibroblast growth factor (bFGF), an angiogenesis-stimulating growth factor, was dose-dependently increased by Puerariae radix. The angiogenic activity of Puerariae radix was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. Conclusion : Puerariae radix significantly induces angiogenesis in vitro and in vivo. These results suggest that Puerariae radix is a potent angiogenic agent, and a promising drug, for the induction of neovascularization.

  • PDF

Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis

  • Lee, Aram;Yun, Eunsik;Chang, Woochul;Kim, Jongmin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.300-307
    • /
    • 2020
  • Background: Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases. Methods: EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation were investigated by modulating the microRNA expression. Results: The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely EndMT. On the other hand, Rg3 markedly attenuated the iE-DAP-induced EndMT and preserved the endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAP-induced EndMT and partly reversed in response to Rg3 via the regulation of NF-κB signaling, suggesting that the Rg3-miR-139-5p-NF-κB axis is a key mediator in iE-DAP-induced EndMT. Conclusion: These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.

Comparison on Cosmetic Activities of Acer mono Bark and Sap (고로쇠 나무의 수피와 수액의 향장활성 비교)

  • Seo, Yong-Chang;Kim, Ji-Seon;Choi, Woon-Yong;Cho, Jeong-Sub;Lim, Hye-Won;Yoon, Chang-Soon;Ma, Choong-Je;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.264-270
    • /
    • 2011
  • In this study, we investigated the cosmetic application of Acer mono sap through an ultra-high pressure process. Exposing Acer mono sap to a ultra-high pressure process resulted in 90.1% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration. Acer mono sap also showed the hightest free radical scavenging activity after the ultra high pressure process. The melanogenesis inhibition rate in cloned M-3 cells was 59.0%. Tyrosinase was inhibited at a rate of 87.2% by adding 100% HPAMS. Anti-wrinkle activity was 78.1%. Acer mono sap showed enhanced storage following the ultra high pressure process. These results indicate that Acer mono sap may be a source for functional cosmetic agents capable of improving antioxidant, whitening, and antiwrinkling effects.

Cytotoxicity of the Methanol Extract of Crotalariae sessiliflorae L. (농길리 메탄올 추출물의 세포독성)

  • Han Du-Seok;Chung Woo-Young;Park Myung-Oh;Shin Min-Kyo;Oh Hyun-Ju;Baek Seung-Hwa
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.144-150
    • /
    • 2001
  • The cytotoxic activity of Cratalariae sessiliflorae on cultured NIH 3T3 fibroblasts and human oral epithelioid carcinoma cells (KB) were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) colorimetric method These fractions of methanol extract of Cratalariae sessiliflorae showed inhibitory effect in vitro in the milligram range against KB cell lines. In general, the antitumor activities of these fractions were does-dependent over the milligram range. The comparison of IC50 values of these fractions in tumor cell lines showed that their susceptibility to these fractions decrease in the following order: Fr. 4> Fr. 6> Fr. 10> Fr. 2> Fr. 11> Fr. 3> Fr. 8> Fr. 7> Fr. 9> Fr. 1> Fr. 5 by the MTT assay. These fractions were tested for their cytotoxic effects on NIH 3T3 fibroblasts using MTT assay. They exhibited potent cytotoxic activities in vitro in the milligram range against NIH 3T3 fibroblasts. In general, the cytotoxic activities of these fractions were does-dependent over the milligram range. The comparison of CD50 values of these fractions in NIH 313 fibroblasts shows that their susceptibility to these fractions in decrease the following order: Fr. 10> Fr. 9> Fr. 2 = Fr. 4> Fr. 8> Fr. 11> Fr. 1 = Fr. 7> Fr. 3> Fr. 5 = Fr. 6 by the MTT assay. These results suggests that fraction 5 has the most growth - inhibitory activity against KB cell lines.

  • PDF

Synovial Cell Migration is Associated with B Cell Activating Factor Expression Increased by TNFα or Decreased by KR33426

  • Lee, Jiyoung;Yoon, Sung Sik;Thuy, Pham Xuan;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.405-413
    • /
    • 2020
  • Fibroblast-like synoviocytes (FLS) play a crucial role in initiating rheumatoid arthritis. B-cell activating factor (BAFF) plays a role in FLS survival as well as in B cell maturation and maintenance. Here, we investigated whether tumor necrosis factor (TNF)-α-induced BAFF expression controls FLS migration and whether BAFF expression in FLS could be regulated by KR33426 which is the inhibitor of BAFF binding to BAFF receptors (BAFF-R) by using MH7A synovial cells transfected with the SV40 T antigen. More TNF-α-treated cells migrated compared to the control. TNF-α increased BAFF expression in FLS, significantly. FLS migration was inhibited by the transfection with BAFF-siRNA. KR33426 also inhibited BAFF expression increased by TNF-α treatment in FLS as judged by western blotting, PCR, and transcriptional activity assay. Kinases including JNK, p38 and Erk were activated by TNF-α treatment. While JNK and p38 were inhibited by KR33426 treatment, no changes in Erk were observed. Transcription factors including p65, c-Fos, CREB and SP1 were enhanced by TNF-α treatment. Among them, c-Fos was inhibited by KR33426 treatment. Small interference(si)-RNA of c-fos decreased BAFF transcriptional activity. FLS migration induced by TNF-α was inhibited by the transfection with BAFF-siRNA. KR33426 increased Twist, Snail, Cadherin-11 and N-Cadherin. In contrast, KR33426 decreased E-cadherin and TNF-α-enhanced CCL2. Taken together, our results demonstrate that synovial cell migration via CCL2 expression could be regulated by BAFF expression which is decreased by KR33426 and c-Fos-siRNA. It suggests for the first time that the role of BAFF-siRNA on FLS migration might be matched in the effect of KR33426 on BAFF expression.

Fabrication of PHBV/Keratin Composite Nanofibrous Mats for Biomedical Applications

  • Yuan, Jiang;Xing, Zhi-Cai;Park, Suk-Woo;Geng, Jia;Kang, Inn-Kyu;Yuan, Jiang;Shen, Jian;Meng, Wan;Shim, Kyoung-Jin;Han, In-Suk;Kim, Jung-Chul
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.850-855
    • /
    • 2009
  • Keratin is an important protein used in wound healing and tissue recovery. In this study, keratin was modified chemically with iodoacetic acid (IAA) to enhance its solubility in organic solvent. Poly(hydroxybutylate-co-hydroxyvalerate) (PHBV) and modified keratin were dissolved in hexafluoroisopropanol (HFIP) and electrospun to produce nanofibrous mats. The resulting mats were surface-characterized by ATR-FTIR, field-emission scanning electron microscopy (FE-SEM) and electron spectroscopy for chemical analysis (ESCA). The pure m-keratin mat was cross-linked with glutaraldehyde vapor to make it insoluble in water. The biodegradation test in vitro showed that the mats could be biodegraded by PHB depolymerase and trypsin aqueous solution. The results of the cell adhesion experiment showed that the NIH 3T3 cells adhered more to the PHBV/m-keratin nanofibrous mats than the PHBV film. The BrdU assay showed that the keratin and PHBV/m-keratin nanofibrous mats could accelerate the proliferation of fibroblast cells compared to the PHBV nanofibrous mats.

Alleviation of Ultraviolet-B Radiation-Induced Photoaging by a TNFR Antagonistic Peptide, TNFR2-SKE

  • Lee, Kyoung-Jin;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.151-160
    • /
    • 2019
  • Ultraviolet (UV) radiation of the sunlight, especially UVA and UVB, is the primary environmental cause of skin damage, including topical inflammation, premature skin aging, and skin cancer. Previous reports show that activation of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) in human skin fibroblasts and keratinocytes after UV exposure induces the expression and release of proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), and subsequently leads to the production of matrix metalloproteases (MMPs) and growth factor basic fibroblast growth factor (bFGF). Here, we demonstrated that TNFR2-SKEE and TNFR2-SKE, oligopeptides from TNF receptor-associated factor 2 (TRAF2)-binding site of TNF receptor 2 (TNFR2), strongly inhibited the interaction of TNFR1 as well as TNFR2 with TRAF2. In particular, TNFR2-SKE suppressed UVB- or $TNF-{\alpha}$-induced nuclear translocalization of activated $NF-{\kappa}B$ in mouse fibroblasts. It decreased the expression of bFGF, MMPs, and COX2, which were upregulated by $TNF-{\alpha}$, and increased procollagen production, which was reduced by $TNF-{\alpha}$. Furthermore, TNFR2-SKE inhibited the UVB-induced proliferation of keratinocytes and melanocytes in the mouse skin and the infiltration of immune cells into inflamed tissues. These results suggest that TNFR2-SKE may possess the clinical potency to alleviate UV-induced photoaging in human skin.

Anti-aging and Anti-oxidative Effect of Naesohwangryun-tang(NSHRT) (내소황련탕(內疎黃連湯)의 항노화 및 항산화 효능 연구)

  • Oh, Sol-Ra;Nam, Sang-Woo;Song, Young-Chae;Kim, Hee-Taek;Kim, Yong-Min;Lee, Chun-Il
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.34 no.4
    • /
    • pp.12-23
    • /
    • 2021
  • Objectives : This study is to investigate the anti-aging and antioxidant effects of Naesohwangryeon-tang(NSHRT) extract in Hs68 fibroblasts. Methods : The fibroblast cell line Hs68 cells were used and MTT analysis was performed to measure the cell viability of Naesohwangryeon-tang, and then MMP-1 was induced with the cytokine TNF-𝛼 to confirm the anti-aging effect through real-time PCR and ELISA. In addition, ROS was induced with the TNF-𝛼 to confirm the anti-oxidant effect through DCF-DA. The signaling pathway according to the antioxidant effect was performed by western blot. Results : Naesohwangryeon-tang did not show cytotoxicity at all concentrations(100-800㎍/㎖) treated on Hs68 cells, and the inhibitory effect of MMP-1 was also confirmed. In addition, it was confirmed that the intracellular ROS increased by TNF-α was decreased by Naesohwangryeon-tang, and it was confirmed that the expression of NQO1 was increased in a concentration-dependent manner of Naesohwangryeon-tang. Conclusions : These results suggest that Naesohwangryeon-tang can be used as an anti-aging material by demonstrating the anti-aging and antioxidant effects of Naesohwangryeon-tang.

Effects of Bletillae Rhizoma on the Elastase, Collagenase, and Tyrosinase Activities and the Procollagen Synthesis in Hs68 Human Fibroblasts

  • Lee, Jung-Hun;Kim, Myung-Gyou;Lee, Sena;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Objectives: Bletillae Rhizoma, the roots of Bletilla striata, is used to restrain the leakage of blood and stop bleeding. It can cure the sores, ulcers, and chapped skin. This study was designed to investigate the collagen metabolism, elastase and tyrosinase activity of Bletillae Rhizoma extract (BR). Methods : The effects of BR on type I procollagen production and collagenase activity in human normal fibroblasts Hs68 after UVB (312 nm) irradiation were measured by ELISA method. The elastase activity, tyrosinase activity, and L-DOPA oxidation after treatment of BR were measured as well. Results : In the present study, the collagen production (type I procollagen) was significantly increased to $15.7{\pm}1.8$ ng/ml at a concentration of BR 100 ${\mu}g/ml$ in UVB damaged Hs68 cells. The increased collagenase activity after UVB damage was significantly recovered to $42.7{\pm}0.7%$, $54.5{\pm}3.5%$, and $38.4{\pm}0.9%$ by BR 10, 30, and 100 ${\mu}g/ml$. The activities of BR 10 mg/ml on tyrosinase activity was significantly reduced to $45.1{\pm}8.4%$ as well. However, there were no significant effects on the elastase activity and the L-DOPA oxidation. Conclusion : BR showed the promoting effects of collagen synthesis and inhibitory effects of collagenase activity in Hs68, human normal fibroblast cells. And these could be thought to have the anti-wrinkle effects and whitening effects in vitro. These results suggest that BR may have potential as an anti-aging ingredient in cosmetic treatment.

Comparative Analysis of Antioxidant Activity of Korean Seaweeds Extracts (국내 자생 해조류 추출물의 항산화능 비교분석 연구)

  • Kyong Kim;Kyung Ha Lee;Hye Won Yang;Chae Hyeon Woo;Woo-Hyuk Jung;Eun-Young Park;Yoon Sin Oh
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.2
    • /
    • pp.112-118
    • /
    • 2023
  • Seaweed-derived foods have long been popular in Korea because of their high content of nutrients that are beneficial to the human body. Recently, Korean seaweeds have been used as raw materials to produce new natural products with health benefits. Herein, we compared the antioxidant activity of 16 Korean seaweed extracts to explore their potential utility as health foods. The total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of seaweed extracts were determined. We also investigated their ability to protect human diploid fibroblast (HDF) cells against hydrogen peroxide. The results showed that seaweed extracts at a concentration of 100 ㎍/mL did not cause any cell toxicity. Sargassum thunbergii (Jichung-i) had the highest TPC and radical scavenging effects, followed by Porphyra tenera (Gim), Silvetia siliquosa (Tteumbugi), and Sargassum fusiforme (Tot). Hydrogen peroxide increased the production of intracellular reactive oxygen species, while P. tenera (Gim), Saccharina japonica (Dasima), and S. thunbergii (Jichung-i) extracts significantly decreased it. The effect was highest in the S. thunbergii (Jichung-i)-treated HDF cells. These findings indicate that S. thunbergii (Jichung-i) shows promise as a potential antioxidant raw material.