• Title/Summary/Keyword: Fibrin-agarose

Search Result 3, Processing Time 0.016 seconds

Evaluation of polyglycolic acid as an animal-free biomaterial for three-dimensional culture of human endometrial cells

  • Sadegh Amiri;Zohreh Bagher;Azadeh Akbari Sene;Reza Aflatoonian;Mehdi Mehdizadeh;Peiman Broki Milan;Leila Ghazizadeh;Mahnaz Ashrafi;FatemehSadat Amjadi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.259-269
    • /
    • 2022
  • Objective: Animal-free scaffolds have emerged as a potential foundation for consistent, chemically defined, and low-cost materials. Because of its good potential for high biocompatibility with reproductive tissues and well-characterized scaffold design, we investigated whether polyglycolic acid (PGA) could be used as an animal-free scaffold instead of natural fibrin-agarose, which has been used successfully for three-dimensional human endometrial cell culture. Methods: Isolated primary endometrial cells was cultured on fibrin-agarose and PGA polymers and evaluated various design parameters, such as scaffold porosity and mean fiber diameter. Cytotoxicity, scanning electron microscopy (SEM), and immunostaining experiments were conducted to examine cell activity on fabricated scaffolds. Results: The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and SEM results showed that endometrial cells grew and proliferated on both scaffolds. Immunostaining showed cytokeratin and vimentin expression in seeded cells after 7 days of culture. On both scaffolds, an epithelial arrangement of cultured cells was found on the top layer and stromal arrangement matrix on the bottom layer of the scaffolds. Therefore, fibrin-agarose and PGA scaffolds successfully mimicked the human endometrium in a way suitable for in vitro analysis. Conclusion: Both fibrin-agarose and PGA scaffolds could be used to simulate endometrial structures. However, because of environmental and ethical concerns and the low cost of synthetic polymers, we recommend using PGA as a synthetic polymer for scaffolding in research instead of natural biomaterials.

Fibrinolytic Enzyme Activity of Extract from Camellia japonica L. (동백나무 추출물의 혈전용해 효소활성)

  • Lim, Chae-Young;Lee, Sook-Young;Pyo, Byeong-Sik;Kim, Sun-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.195-201
    • /
    • 2006
  • The fibrinolytic activities of soluble proteins extracted from young leaves of Camellia japonica L. were studied. Fibrinolvity activity of extract from partitions of C. japonica L. showed 1.6-2.0 times higher than plasmin used as positive control. The fibrinolytic enzyme was confirmed directly from young leaves of C. japonica L. by a fibrin Plate and fibrin zymography. The protein was composed of a single polypeptide and its apparent molecular weight was found to be 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the fibrinolytic activity were pH 5.5 and $30^{\circ}C$, respectively. Also, the fibrinolytic activity was clearly inhibited by PMSF and TLCK, suggesting that it is a member of the trypsin-like serine protease. All these results suggest the protease is a fibrinolytic enzyme belong to a family of trypsin-like serine protease.

The Production of Tissue Type Plasminogen Activator from Normal Human Cell tine (정상 인체 세포로부터 조직 플라스미노겐 활성인자의 대량생산)

  • Lee, Hyeon-Yong;Kim, Geum-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.522-525
    • /
    • 1988
  • A method to produce tissue type Plasminogen Activator (tPA) from normal human fibroblast is developed by cultivating cells in serum free media containing heparin as an inducer. Optimal dose of this inducer was 30$\mu$g/m$\ell$. The composition of serum free medium was also defined to fit to the industrial scale cultivation. 1.42 ug of tPA per 10$^5$ viable cells per ml was produced. 1.1 gram of tPA can be produced every day from this cell line under normal perfusion chemostat operations assuming that same productivity is maintained when the process is sealed up. This method could reduce pro-duction costs and simplify purification processes by using serum free medium. Tissue type PA produced from this cell line has high ability of dissolving clots, based upon fibrin lysis test showing 50mm$^2$ of clearing zones in agarose gel plate. These results were reproducible and in good agreement with results of ELISA assay. tPA from normal human cells will be safer than that from melanoma and recombinant cells in human clinical trials.

  • PDF