• Title/Summary/Keyword: Fibrin scaffold

Search Result 17, Processing Time 0.024 seconds

The bone regenerative effect of silk fibroin mixed with platelet-rich fibrin (PRF) in the calvaria defect of rabbit (가토의 두개 결손부에서의 실크 단백질과 platelet-rich fibrin (PRF)의 골형성 효과)

  • Song, Ji-Young;Kweon, Hae-Yong;Kwon, Kwang-Jun;Park, Young-Wook;Kim, Seong-Gon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.250-254
    • /
    • 2010
  • Introduction: This study evaluated the bone regenerative effect of silk fibroin mixed with platelet-rich fibrin (PRF) of a bone defect in rabbits. Materials and Methods: Ten New Zealand white rabbits were used for this study and bilateral round shaped defects were formed in the parietal bone (diameter: 8.0 mm). The silk fibroin mixed with PRF was grafted into the right parietal bone (experimental group). The left side (control group) was grafted only PRF. The animals were sacrificed at 4 weeks and 8 weeks. A micro-computerized tomography (${\mu}$CT) of each specimen was taken. Subsequently, the specimens were decalcified and stained for histological analysis. Results: The average value of plane film analysis was higher in the experimental group than in the control group at 4 weeks and 8weeks after surgery. However, the difference was not statistically significant.(P>0.05) The tissue mineral density (TMD) in the experimental group at 4 weeks after surgery was significantly higher than the control group.(P<0.05) Conclusion: Silk fibroin can be used as a scaffold of PRF for rabbit calvarial defect repair.

Evaluation of blood clot, platelet-rich plasma, and platelet-rich fibrin-mediated regenerative endodontic procedures in teeth with periapical pathology: a CBCT study

  • Swati Markandey;Haridas Das Adhikari
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.41.1-41.20
    • /
    • 2022
  • Objectives: This study compared the clinical and radiological outcomes of regenerative endodontic procedures (REPs) using blood clots (BCs), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) through intraoral periapical radiography (IOPAR) and cone-beam computed tomography (CBCT). Materials and Methods: Forty-five single-rooted necrotic teeth with periapical pathology were randomly allocated to receive BC, PRP, or PRF as an individual scaffold. Outcomes were evaluated in 35 teeth in 23 patients with a follow-up period of 12-24 months through qualitative IOPAR scoring and quantitative CBCT measurements. Healing of periapical lesions and in immature teeth, changes in the apical foramen diameter (AFD), root wall thickness (RWT), and root length (RL) were assessed. A p value less than 0.05 was considered to indicate statistical significance. Results: All teeth were asymptomatic except 1 in the PRP group. Periapical lesion healing was seen in all except 2 teeth in the BC group and 3 in the PRP group. Both IOPAR and CBCT revealed no significant differences in bone healing or changes in AFD, RWT, and RL among the 3 groups. A positive pulp sensibility response to the cold test was seen in 2 teeth in the BC group, but none to the electric pulp test. Intracanal calcification (ICC) was evident in more teeth in the BC group than in the PRP and PRF groups, and was also significantly higher in immature teeth. Conclusions: Our results revealed that BC, PRP, and PRF have similar potential as scaffolds in REPs, and ICC may be a concern for long-term outcomes.

Coronal tooth discoloration induced by regenerative endodontic treatment using different scaffolds and intracanal coronal barriers: a 6-month ex vivo study

  • Shokouhinejad, Noushin;Razmi, Hassan;Farbod, Maryam;Alikhasi, Marzieh;Camilleri, Josette
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.25.1-25.10
    • /
    • 2019
  • Objective: The aim of this study was to evaluate discoloration of teeth undergoing regenerative endodontic procedures (REPs) using blood clot or platelet-rich fibrin (PRF) as the scaffolds and different calcium silicate-based materials as the intracanal coronal barriers in an ex vivo model. Materials and Methods: Forty-eight bovine incisors were prepared and disinfected using 1 mg/mL double antibiotic paste (DAP). The specimens were then randomly divided into 2 groups (n = 24) according to the scaffolds (blood or PRF). After placement of scaffolds each group was divided into 2 subgroups (n = 12) according to the intracanal coronal barriers (ProRoot MTA or Biodentine). The pulp chamber walls were sealed with dentin bonding agent before placement of DAP and before placement of scaffolds. The color changes (${\Delta}E$) were measured at different steps. The data were analyzed using 2-way analysis of variance. Results: Coronal discoloration induced by DAP was not clinically perceptible (${\Delta}E{\leq}3.3$). Regarding the type of the scaffold, coronal discoloration was significantly higher in blood groups compared with PRF groups at the end of REP and after 1 month (p < 0.05). However, no significant difference was found between PRF and blood clot after 6 months (p > 0.05). Considering the type of intracanal coronal barrier, no significant difference existed between ProRoot MTA and Biodentine (p > 0.05). Conclusions: With sealing the dentinal tubules of pulp chamber with a dentin bonding agent and application of DAP as an intracanal medicament, coronal color change of the teeth following the use of PRF and blood sealed with either ProRoot MTA or Biodentine was not different at 6-month follow-up.

Effect of Porcine Cancellous Bones on Regeneration in Rats with Calvarial Defect (랫드의 두개골 결손부에서 돼지 해면질골이 골재생에 미치는 영향)

  • Yoo, Kyeong-Hoon;Kim, Se-Eun;Shim, Kyung-Mi;Park, Hyun-Jeong;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1207-1213
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of porcine cancellous bone as a scaffold in a rat calvarial defect model. Critical-sized defects were created in 30 male Sprague-Dawley rats. The animals were divided into critical defect (CD, n=10), $\beta$-tricalcium phosphate (TCP) graft (BT, n=10) and porcine cancellous bone graft (PCB, n=10) groups. Each defect was filled with $\beta$-TCP mixed with fibrin glue or porcine cancellous bone powder mixed with fibrin glue. In the CD group, the defect was left empty. All rats were sacrificed at 8 weeks after bone graft surgery, and bone formation was evaluated by gross observation, plain radiography, micro-computed tomography scanning and histological evaluation. Repair of bone defect was the least in the CD group, and significant new bone formation was observed in the PCB group. Grafting of porcine cancellous bone was more efficient for regenerating new bone than grafting $\beta$-TCP.

The Effect of Porcine Cancellous Bone for Bone Regeneration and Application of Platelet-rich Fibrin in Rabbit Calvarial Defect (가토 두개골 결손부에 이식된 저골(猪骨)과 혈소판 풍부 섬유소의 골형성 효과)

  • Park, Jeong Ik;Jeon, Seong Bae;Song, Young Il;Do, Hyung Sik;Lee, Jin Yong;Jang, Hyun Seok;Kwon, Jong Jin;Rim, Jae Suk;Lee, Eui Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.391-397
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the effectiveness of the platelet-rich fibrin (PRF) used in combination with the porcine cancellous bone as a scaffold, in promoting bone regeneration in the bone defects ofthe rabbit calvaria. Methods: Ten rabbits were used in the study. Three round-shaped defects (diameter 8.0 mm) were created in the rabbit calvaria and were filled with nothing (control group), porcine cancellousbone (Experimental Group 1, porcine bone) and PRF-mixed porcine cancellous bone (Experimental Group 2). TS-GBB is a xenogenic bone-substitute product comprised of a high heat-treated mineralized porcine cancellous bone. Animals were sacrificed at 6 weeks and 12 weeks for the histological and radiographic evaluations. Results: In the micro computed tomography and histological results, the experimental groups 1 and 2 showed more bone formation, remodeling, and calcification than the control group. The new bone formation ratio showed theGroup 2 to be larger than Group 1 at6 and 12 weeks. However, there was no significant difference between the experimental groups 1 and 2 in the new bone formation area, at the 6 and 12 weeks (P>0.05). Conclusion: The PRF-mixed group showed more bone formation than the porcine cancellousbonegroup (TS-GBB), butthere was a no significant difference. The PRF may not lead to enhanced bone healing when grafted with the porcine cancellous bone.

THE EFFECTS OF BIO-$OSS^{(R)}$ AS A SCAFFOLDS DURING SINUS BONE GRAFT USING MESENCHYMAL STEM CELLS IN RABBIT (가토에서 자가유래 골아줄기세포를 이용한 상악동 골 이식술시 비계체로서 Bio-$Oss^{(R)}$의 효과에 관한 연구)

  • Lee, Jun;Sung, Dae-Hyuk;Choi, Jae-Young;Choi, Sung-Rym;Cha, Su-Ryun;Jang, Jae-Deog;Kim, Eun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.405-418
    • /
    • 2007
  • Mesenchymal stem cells(MSCs) have been though to be multipotent cells that can replicate that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. Especially, scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Selection of a matrix carrier imvolves consideration of the matrix's role as a scaffold for physical support and host tissue integration as well as its ability to support of synergize the osteoinductive program of the implanted mesenchymal stem cell. The aim of this study is to evaluate the effect of autobone and Bio-$Oss^{(R)}$ to adherent mesenchymal stem cells as scaffolds on sinus augmentation with fibrin glue mixture in a rabbit model. 16 New Zealand White rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. Cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, the animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, autobone scaffolds group showed integrated graft bone with host bone from sinus wall. At 2 and 4 weeks, it showed active newly formed bone and neovascularization. At 8 weeks, lamellae bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than Bio-$Oss^{(R)}$ scaffolds group. there were significant differences in bone volume between 4 and 8 weeks(p<0.05).

Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model

  • Nam, Jung-Woo;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.6
    • /
    • pp.373-387
    • /
    • 2017
  • Objectives: The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods: For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results: Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion: BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs.