Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.8.1207

Effect of Porcine Cancellous Bones on Regeneration in Rats with Calvarial Defect  

Yoo, Kyeong-Hoon (College of Veterinary Medicine, Chonnam National University)
Kim, Se-Eun (College of Veterinary Medicine, Chonnam National University)
Shim, Kyung-Mi (Department of Radiology, Nambu University)
Park, Hyun-Jeong (College of Veterinary Medicine, Jeju National University)
Choi, Seok-Hwa (College of Veterinary Medicine, Chungbuk National University)
Kang, Seong-Soo (College of Veterinary Medicine, Chonnam National University)
Publication Information
Journal of Life Science / v.20, no.8, 2010 , pp. 1207-1213 More about this Journal
Abstract
The purpose of this study was to evaluate the effect of porcine cancellous bone as a scaffold in a rat calvarial defect model. Critical-sized defects were created in 30 male Sprague-Dawley rats. The animals were divided into critical defect (CD, n=10), $\beta$-tricalcium phosphate (TCP) graft (BT, n=10) and porcine cancellous bone graft (PCB, n=10) groups. Each defect was filled with $\beta$-TCP mixed with fibrin glue or porcine cancellous bone powder mixed with fibrin glue. In the CD group, the defect was left empty. All rats were sacrificed at 8 weeks after bone graft surgery, and bone formation was evaluated by gross observation, plain radiography, micro-computed tomography scanning and histological evaluation. Repair of bone defect was the least in the CD group, and significant new bone formation was observed in the PCB group. Grafting of porcine cancellous bone was more efficient for regenerating new bone than grafting $\beta$-TCP.
Keywords
Bone graft; porcine cancellous bone; $\beta$-TCP; calvarial defect; rat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wagner, J. R. 1991. A $3\frac{1}{2}$-year clinical evaluation of resorbable hydroxyapatite $OsteoGen^{{\circledR}}$ (HA Resorb) used for sinus lift augmentations in conjunction with the insertion of endosseous implants. J. Oral Implantol. 17, 152-164.
2 Wiltfang, J., K. A. Schlegel, S. Schultze-Mosgau, E. Nkenke, R. Zimmermann, and P. Kessler. 2003. Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): Does platelet-rich plasma promote its osseous integration and degradation? Clin. Oral Implants. Res. 14, 213-218.   DOI
3 Hollinger, J. O., J. Brekke, E. Gruskin, and D. Lee. 1996. Role of bone substitutes. Clin. Orthop. 324, 55-65.   DOI
4 Kim, S. H., J. W. Shin, S. A. Park, Y. K. Kim, M. S. Park, J. M. Mok, W. I. Yang, and J. W. Lee. 2004. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J. Biomed. Mater. Res. B Appl. Biomater. 68, 69-74.
5 Kishimoto, M., S. I. Kanemaru, M. Yamashita, T. Nakamura, Y. Tamura, H. Tamaki, K. Omori, and J. Ito. 2006. Cranial bone regeneration using a composite scaffold of Beta-tricalcium phosphate, collagen, and autologous bone fragments. Laryngoscope 116, 212-216.   DOI
6 Martin, R. B., M. W. Chapman, N. A. Sharkey, S. L. Zissimos, B. Bay, and E. C. Shors. 1993. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials 14, 341-348.   DOI
7 Schmitz, J. P., Z. Schwartz, J. O. Hollinger, and B. D. Boyan. 1990. Characterization of rat calvarial nonunion defects.Acta. Anat. 138, 185-192.   DOI
8 Millis, L. D. and A. S. Martinez. 2003. Textbook of Small Animal Surgery. pp. 1875-1891, 3rd eds., Saunders. Philadelphia.
9 Mundy, G. R. 1993. Vision for the future in osteoporosis research. Osteoporosis Int. 2, 29-34.
10 Prokic, B. 1990. Comparative clinical study of porous hydroxyapatite and decalcified freeze-dried bone in human periodontal defects. J. Periodontol. 61, 399-404.   DOI
11 Sogal, A. and A. J. Tofe. 1999. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone for dental applications. J. Periodontol. 70, 1053-1063.   DOI
12 Aichelmann-reidy, M. E. and R. A. Yukna. 1998. Bone replacement grafts: the bone substitutes. Dent. Clin. North Am. 42, 491-503.
13 Arrington, E. D., W. J. Smith, H. G. Chambers, A. L. Bucknel, and N. A. Davino. 1996. Complications of iliac crest bone harvesting. Clin. Orthop. 329, 300-309.   DOI
14 Betz, R. R. 2002. Limitation of autograft and allograft: New synthetic solutions. Orthopedics 25, 561-570.
15 Bhaskar, S. N., J. M. Brady, L. Getter, M. F. Grower, and T. Driskell. 1971. Biodegradable ceramic implants in bone electron and light microscopic analysis. Oral Surg. Oral Med. Oral Pathol. 32, 336-346.   DOI
16 Eppley, B. L., W. S. Pietrzak, and M. W. Blanton. 2005. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J. Craniofac. Surg. 16, 981-989.   DOI
17 Bucholz, R. W., A. Carlton, and R. Holmes. 1987. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop. Clin. North Am. 18, 323-334.
18 Costantino, P. D. and C. D. Friedman. 1994. Synthetic bone graft substitutes. Otolaryngol. Clin. North Am. 27, 1037-1075.
19 Cypher, T. J. and J. P. Grossman. 1996. Biological principles of bone graft healing. J. Foot Ankle Surg. 35, 413-417.   DOI
20 Goulet, J. A., L. E. Senunas, G. L. DeSilva, and M. L. Greenfeild. 1997. Autogenous iliac crest bone graft: Complications and functional assessment. Clin. Orthop. Rel. Res. 339, 76-81.   DOI