• Title/Summary/Keyword: Fibrils

Search Result 132, Processing Time 0.029 seconds

Nano-mechanical Characterization of Thin Film of Type I Collagen Fibrils by Atomic Force Microscopy (원자력 현미경을 이용한 Type I Collagen Fibrils 박막의 기계적 특성 연구)

  • Jeong, Gu-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.38-38
    • /
    • 2013
  • The mechanical cues that adherent cells derive from the extracellular matrix (ECM) can effect dramatic changes in cell migration, proliferation, and differentiation. Using a thin film of Type I collagen fibrils comprised of 100 nm to 200 nm collagen fibrils overlaying a bed of smaller fibrils, changes in cellular response to systematically controlled changes in mechanical properties of collagen was investigated. Further, an experimental and modeling approaches to calculate the elastic modulus of individual collagen fibrils, and thereby the effective stiffness of the entire collagen thin film matrix, from atomic force microscopy force spectroscopy data was performed. These results demonstrate an approach to analysis of fundamental properties of thin, heterogeneous, organic films, and add further insights into the mechanical properties of collagen fibrils that are of relevance to cell response to the ECM.

  • PDF

Nanomechanical behaviors and properties of amyloid fibrils

  • Choi, Bumjoon;Lee, Sang Woo;Eom, Kilho
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Amyloid fibrils have recently been considered as an interesting material, since they exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is larger than that of other protein materials. Despite recent findings of these excellent mechanical properties for amyloid fibrils, it has not been fully understood how these excellent mechanical properties are achieved. In this work, we have studied the nanomechanical deformation behaviors and properties of amyloid fibrils such as their elastic modulus as well as fracture strength, by using atomistic simulations, particularly steered molecular dynamics simulations. Our simulation results suggest the important role of the length of amyloid fibrils in their mechanical properties such that the fracture force of amyloid fibril is increased when the fibril length decreases. This length scale effect is attributed to the rupture mechanisms of hydrogen bonds that sustain the fibril structure. Moreover, we have investigated the effect of boundary condition on the nanomechanical deformation mechanisms of amyloid fibrils. It is found that the fracture force is critically affected by boundary condition. Our study highlights the crucial role of both fibril length and boundary condition in the nanomechanical properties of amyloid fibrils.

Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils

  • Choi, Erika Y.;Kang, Sam Sik;Lee, Sang Kook;Han, Byung Hee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2020
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease and a major cause of dementia in elderly individuals worldwide. Increased deposition of insoluble amyloid β (Aβ) fibrils in the brain is thought be a key neuropathological hallmark of AD. Many recent studies show that natural products such as polyphenolic flavonoids inhibit the formation of insoluble Aβ fibrils and/or destabilize β-sheet-rich Aβ fibrils to form non-cytotoxic aggregates. In the present study, we explored the structure-activity relationship of naturally-occurring biflavonoids on Aβ amyloidogenesis utilizing an in vitro thioflavin T assay with Aβ1-42 peptide which is prone to aggregate more rapidly to fibrils than Aβ1-40 peptide. Among the biflavonoids we tested, we found amentoflavone revealed the most potent effects on inhibiting Aβ1-42 fibrillization (IC50: 0.26 µM), as well as on disassembling preformed Aβ1-42 fibrils (EC50: 0.59 µM). Our structure-activity relationship study suggests that the hydroxyl groups of biflavonoid compounds play an essential role in their molecular interaction with the dynamic process of Aβ1-42 fibrillization. Our atomic force microscopic imaging analysis demonstrates that amentoflavone directly disrupts the fibrillar structure of preformed Aβ1-42 fibrils, resulting in conversion of those fibrils to amorphous Aβ1-42 aggregates. These results indicate that amentoflavone affords the most potent anti-amyloidogenic effects on both inhibition of Aβ1-42 fibrillization and disaggregation of preformed mature Aβ1-42 fibrils.

Control of Morphology and Subsequent Toxicity of AβAmyloid Fibrils through the Dequalinium-induced Seed Modification

  • Kim, Jin-A;Myung, Eun-Kyung;Lee, In-Hwan;Paik, Seung-R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2283-2287
    • /
    • 2007
  • Amyloid fibril formation of amyloid β/A4 protein (Aβ) is critical to understand the pathological mechanism of Alzheimer's disease and develop controlling strategy toward the neurodegenerative disease. For this purpose, dequalinium (DQ) has been employed as a specific modifier for Aβ aggregation and its subsequent cytotoxicity. In the presence of DQ, the final thioflavin-T binding fluorescence of Aβ aggregates decreased significantly. It was the altered morphology of Aβ aggregates in a form of the bundles of the fibrils, distinctive from normal single-stranded amyloid fibrils, and the resulting reduced β-sheet content that were responsible for the decreased fluorescence. The morphological transition of Aβ aggregates assessed with atomic force microscope indicated that the bundle structure observed with DQ appeared to be resulted from the initial multimeric seed structure rather than lateral association of preformed single-stranded fibrils. Investigation of the seeding effect of the DQ-induced Aβ aggregates clearly demonstrated that the seed structure has determined the final morphology of Aβ aggregates as well as the aggregative kinetics by shortening the lag phase. In addition, the cytotoxicity was also varied depending on the final morphology of the aggregates. Taken together, DQ has been considered to be a useful chemical probe to control the cytotoxicity of the amyloid fibrils by influencing the seed structures which turned out to be central to develop therapeutic strategy by inducing the amyloid fibrils in different shapes with varied toxicities.

The Effect of L-Ascorbic Acid on the Formation of Immature Crosslink in Bone Collagen in vitro (비타민 C가 in vitro 계에서 콜라겐 미숙가교 생성에 미치는 영향)

  • 김미향
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1332-1338
    • /
    • 1999
  • Intermolecular collagen cross links stabilize collagen fibrils and are necessary for normal tensile strength in collagen fibrils. Once the fibrils are aligned, hydroxyllysine, hydroxylysine derived aldehyde modified enzymatically, reacts with hydroxylysine to form the dehydrodihydroxylysinonorleucine (DHLNL), an immature crosslink. Pyridinoline, one of matured cross links is presumably formed nonenzymatically through condensation of DHLNL and hydroxylysine residue. It is widely distributed in hard connective tissues such as cartilage, bone and tendon. L ascorbic acid(AsA) is well known to be required for the enzymatic hydroxylation of proline and lysine in collagen fibrils. The purpose of this study is to clarify the role of AsA on the biosynthesis of DHLNL in vitro. We examined the effect of AsA on the formation of hydroxylysine and DHLNL in collagen. Pyridinoline and DHLNL were measured as a function of time. The contents of DHLNL was increased, reached maximum within 2 hr and was held until 24 hr, then it decreased slowly. On the contrary, pyridinoline increased gradually after 24 hr and continued to increase for 2 weeks. Moreover, the contents of DHLNL remarkably decreased at 60 min after incubation, the contents of DHLNL was decreased by addition of AsA or dehydroascorbic acid(DHA). These results suggest that the supplementation of AsA causes decrease in DHLNL formation and pyridinoline formed by nonenzymatic reaction of DHLNL.

  • PDF

Amyloid Polymorphism of α-Synuclein Induced by Active Firefly Luciferase

  • Yang, Jee Eun;Hong, Je Won;Kim, Jehoon;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.425-430
    • /
    • 2014
  • Amyloidogenic proteins often exhibit fibrillar polymorphism through alternative assembly processes, which has been considered to have possible pathological implications. Here, firefly luciferase (LUC) is shown to induce amyloid polymorphism of ${\alpha}$-synuclein, the major constituent of Lewy bodies found in Parkinson's disease, by acting as a novel template. The drastically accelerated fibrillation kinetics of ${\alpha}$-synuclein with LUC required the nucleation center produced by the active enzyme of LUC. Fluorescent dye binding, transmission electron microscopy, and Fourier transformed infrared spectroscopy revealed the morphologically distinctive amyloid fibrils of ${\alpha}$-synuclein prepared in the absence or presence of LUC. As the altered morphological characteristics became inherent to the mature fibrils, those properties were inherited to next-generations via nucleation-dependent fibrillation process. The seed control, therefore, would be an effective means to modify amyloid fibrils with different biochemical characteristics. In addition, the LUC-directed amyloid fibrillar polymorphism also suggests that other cellular biomolecules including enzymes in general are able to diversify amyloid fibrils, which could be self-propagated with diversified biological activities, if any, inside cells.

Synthesis of Functionalized Benzoxazoles and Their Binding Affinities to A β42 Fibrils

  • Chun, Young-Shin;Lim, Soo-Jeong;Oh, Seung-Jun;Moon, Dae-Hyuk;Kim, Dong-Jin;Cho, Cheon-Gyu;Yoo, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1765-1768
    • /
    • 2008
  • Functionalized benzoxazole derivatives were designed and synthesized based on the structural features of PIB and FDDNP, which show excellent binding affinities to aggregated A$\beta$ 42 fibrils. All the synthesized compounds were evaluated by competitive binding assay against aggregated A$\beta$ 42 fibrils using [$^{125}$I]TZDM and displayed good in vitro binding affinities with Ki values (0.47-15.3 nM) from subnanomolar to nanomolar range. Among them, benzoxazoles 1f and 1a having malononitrile and ester moieties at C-6 exhibited superior binding affinities ($K_i$ = 0.47 and 0.61 nM, respectively) to PIB ($K_i$ = 0.77 nM).

Fibrillation in TLCP/Polyester Binary Blends

  • Kim, Jun-Young;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.101-101
    • /
    • 2003
  • TLCP/Polyester binary blends were prepared by melt blending. Rheological, morphological, and thermal properties of of TLCP/polyester blends were investigated with viscosity ratio. Diameter of TLCP fibrils decreased with viscosity ratio. More and smaller TLCP fibrils were obtained at higher shear rate. Lower viscosity ratio was necessary for the fibrillation of TLCP in the binary blends.

  • PDF

Ultrastructural Study on the Development of the Flexor Digital Tendon of the Hand in Human Fetus (인태아 수지굴근건의 발육에 관한 전자현미경적 연구)

  • Yoon, Jae-Rhyong;Ahn, Ho-Beom;Nam, Kwang-Il
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.157-175
    • /
    • 1996
  • The development of flexor digital tendon of the hand was studied by electron microscopy in human fetuses ranging from 9 mm to 260 mm crown rump length. The primordium of tendons was first identified as discrete collection of mesenchymal cells at 25 mm fetus. Synovial sheath formation had commenced by 40 mm fetus and was complete by 70 mm fetus. Cell junction or adhesion sites at all ages were noted between the tendon cells. When dilatation of the synovial cavity occurred, two types of synovial cells were observed. A-type cells had numerous vesicles and large vacuoles. In contrast, B-type cells were characterized by abundant rough endoplasmic reticulum and well-developed Golgi complex. By $150mm{\sim}260mm$ fetuses, a mojority of the synovial cells were type B. The most remarkable difference between the synovial cells of full-term fetus and adult was the larger amount of collagen fibers in the latter. The vascular buds were first observed between the individual fibril bundles in the interfascicular space at 150 mm fetus. At 25 mm fetus, collagen fibrils were first noted within narrow cytoplasmic recesses which were continued with the extracellular space. Collagen fibrils were filled in almost entire extracellular space at 150 mm fetus. Besides collagen fibrils in the extracellular space small elastic fibers were also identified and followed in their development.

  • PDF

Secondary renal amyloidosis in a 13-year-old girl with bronchiectasis

  • Yang, Eun-Ae;Lee, Dong-Won;Hyun, Myung-Chul;Cho, Min-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.7
    • /
    • pp.770-773
    • /
    • 2010
  • A 13-year-old girl was diagnosed with non-cystic fibrosis (CF)-related multifocal bronchiectasis accompanied by nephrotic-range proteinuria of unknown cause. On renal biopsy, there were many segmental homogeneous deposits of amyloid tissue with positive Congo red staining in the glomeruli and interstitium. On electron microscopy, relatively straight, non-branching, randomly arranged amyloid fibrils were showed in the mesangium of the glomeruli. These fibrils were approximately 10 nm in diameter, compatible with secondary amyloidosis. Her level of serum amyloid A was remarkably elevated. To our knowledge, this girl is the first case of secondary renal amyloidosis induced by bronchiectasis in Korean children.