• 제목/요약/키워드: Fibril

검색결과 123건 처리시간 0.02초

고분자블렌드에서의 변형거동 (Deformation Behavior in Compatible Polymer Blends)

  • 전병철
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1992년도 추계학술발표강연 및 논문개요집
    • /
    • pp.121-121
    • /
    • 1992
  • Deformation behavior of compatible polymer blends was studied using scanning electron, optical, and transmission electron microscopies. Four different compatible systems were employed and charaterized in this investigation : polystyrene(PS) and polyphenylene oxide(PPO), polystyrene(PS) and polyvinlmethylether(PVME), polystyrene(PS) and poly $\alpha$-methylstyrene(P$\alpha$MS). Individual craze and shear deformation zone microstructures were examined by transmission microscopy (TEM). For TEM observations, specimens deformed in-situ on a TEM grid were utilized. Quantiative analysis of these crazes and shear deformation zones was obtained from the nicrodensitometry of the TEM negatives in the manner developed by Lauterwasser and Kramer. Microdensitometry resulys showed that the fibril extension ratio decreased as the PPO content increased in the PS/PPO blends, and finally, for 100% PPO, only shear deformation zones were observed. For the PS/PVME blends, the ribril extension ratio also decreased as the VME content increased. For the PS/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased, For the PPO/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased.

  • PDF

Dimerization of Fibril-forming Segments of α-Synuclein

  • Yoon, Je-Seong;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1845-1850
    • /
    • 2009
  • We have performed replica-exchange molecular dynamics (REMD) simulations on the dimer formation of fibrilforming segments of $\alpha$-Synuclein (residues 71 - 82) using implicit solvation models with two kinds of force fields- AMBER parm99SB and parm96. We observed spontaneous formation of dimers from the extensive simulations, demonstrating the self-aggregating and fibril forming properties of the peptides. Secondary structure profile and clustering analysis showed that dimers with antiparallel $\beta$-sheet conformations, stabilized by well-defined hydrogen boding, are major species corresponding to global free energy minimum. Parallel dimers with partial $\beta$-sheets are found to be off-pathway intermediates. The relative instability of the parallel arrangements is due to the repulsive interactions between bulky and polar side chains as well as weaker backbone hydrogen bonds.

상엽(桑葉) 추출물의 미백활성 및 피부섬유구조 형성에 미치는 효과 (Effect of Mori Follium Extract on the Melanogenesis and Skin Fibril Matrix)

  • 권오준
    • 대한본초학회지
    • /
    • 제31권5호
    • /
    • pp.41-46
    • /
    • 2016
  • Objectives : The Skin is composed of multiple layers, including the epidermis, dermis, and hypodermis. It provides a vital barrier structure that protects vertebrates from external environmental antigens, solvents, ultraviolet light, microorganisms, toxins, and weather conditions. Although several biological effects of Mori Follium have been reported, beneficial effects of Mori Follium in skin health remain unclear. In this study, we prepared water extract of Mori Follium (MLE) and evaluated the effects on melanin accumulation and expression levels of skin fibril-related proteins.Methods : The cytotoxicities of MLE in B16F10 melanoma and human skin fibroblasts (HSF) were examined by MTT assay. Inhibitory effect of MLE on the α-MSH- and IBMX-induced melanosis in B16F10 melanoma was examined. The expression levels of fibronectin, collagen 1α2, and CCN2 in MLE-treated HSF were analyzed by reverse transcription-polymer chain reaction (RT-PCR) and western blotting.Results : The MLE treatment for 24 h did not affect to the B16F10 and HSF at concentrations of 1, 10, 50, 100, 200, 400 and 800 ㎍/ml. The MLE treatment for 72 h significantly and dose dependently suppressed melanin accumulation in B16F10 melanoma. In addition, the MLE treatment up-regulated expression levels of skin fibril-related genes such as fibronectin, collagen 1α2, and CCN2 in HSF. Our western blot analysis revealed MLE-induced up-regulation of skin fibril-related genes required the activation of CCN2 protein.Conclusions : In conclusion, these findings suggest that the MLE could be used in development of cosmetic natural material of maintaining healthy skin.

잣나무 조림목(造林木)의 조직특성(組織特性)의 변동(變動)과 성열재(成熱材)·미성열재(未成熱材)의 재질(材質) (Changes in Cellular Characteristics and Qualities of Matured and Juvenile Wood from Reforested Tree of Pinus koraiensis)

  • 강선구
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권2호
    • /
    • pp.73-80
    • /
    • 1993
  • Pinus koraiensis is one of the most important reforestation species which had widely been planted around the country. Therefore, there are great research needs on the fundamental properties of wood to extend the frequency of uses and adequate availabilities. Research results on the characteristics of anatomical wood properties and changes are summarized as follows: 1. At a horizontal direction of tree trunk, the tracheid length at outer wood gradually becomes shorter as it reaches to pith. The tracheid length having between 32 and 42 annual rings showed over 2.5 times longer than that of pith, and also its length increases from the bottom to the top of the stem. 2. The tracheid diameters in latewood showed a little fluctuations, and the shortest near to the pith in earlywood. The tracheid diameters in earlywood are more than 2 times those of latewood, and the differences between the mature and juvenile wood in earlywood are less than 10${\mu}m$. 3. The tracheid wall thickness in early wood showed a little fluctuations. On the contrary, tracheid wall thickness in latewood rapidly increases from the pith to the bark. The tracheid wall of mature wood showed 10 to 20% thicker than that of juvenile wood. 4. The fibril angle at the secondary walls of tracheid within an annual ring showed higher degree in earlywood than that of latewood. The highest tracheid fibril angle was observed at around the pith of both earlywood and latewood. Then, fibril angle slowly decreased toward outer wood, and was stabilized after 15 years. 5. Structural boundaries between mature and juvenile wood from Pinus koraiensis are divided by 13 to 19 annual ring and distance of 5 to 8cm from the pith.

  • PDF

울금(鬱金) 추출물의 미백 활성 및 진피 섬유구조 단백질에 미치는 효과 (Effect of Curcuma longa L. Extract on the Melanin Accumulation and Expression of Skin Fibril Proteins)

  • 김혜옥
    • 대한본초학회지
    • /
    • 제34권2호
    • /
    • pp.75-82
    • /
    • 2019
  • Objectives : In this study, various biological effects of Curcuma longa L. have been studied, however, beneficial effect of Curcuma longa L. in skin health remain still unclear. In this study, Curcuma longa L. water extract (CLE) was prepared. Inhibitory effect of CLE on melanin accumulation of B16F10 cells and expression levels of skin fibril-related proteins of human skin fibroblasts (HSF) were evaluated. Methods : The cytotoxic effect of CLE in B16F10 cells and HSF were examined by MTT assay. Inhibitory effect of CLE on the ${\alpha}-MSH-$ and IBMX-induced melanin accumulation and tyrosinase activity were evaluated in B16F10 cells. The expression levels of connective tissue growth factor (CCN2), Smad2, procollagen $1{\alpha}2$, collagen $1{\alpha}2$, and fibronectin in CLE-treated HSF were analyzed by western blotting. Results : The CLE treatment (concentrations 10 to $400{\mu}g/ml$) for 72 h did not affect to the B16F10 viability. However, 200 and $400{\mu}g/ml$ of CLE treatment for 24 h showed cytotoxic effect in HSF. Therefore, the concentrations 10, 50, and $100{\mu}g/ml$ of CLE were chosen in this study. The CLE treatment for 72 h dose dependently and significantly suppressed melanin accumulation and tyrosinase activity of B16F10 cells. In addition, the CLE treatment up-regulated expression levels of skin fibril-related proteins such as CCN2, Smad2, procollagen $1{\alpha}2$, collagen $1{\alpha}2$, and fibronectin. Conclusions : In conclusion, these results suggest that the CLE could be used as a natural material for skin health.

Effect of the Processing History on the Morphology and Properties of the Ternary Blends of Nylon 6, a Thermotropic Liquid Crystalline Polymer, and a Functionalized Polypropylene

  • Yongsok Seo;Kim, Hyong-Jun;Kim, Byeongyeol;Hong, Soon-Man;Hwang, Seung-Sang;Kim, Kwang-Ung
    • Macromolecular Research
    • /
    • 제9권4호
    • /
    • pp.238-246
    • /
    • 2001
  • Properties of ternary blends of nylon 6 (Ny6), a thermotropic liquid crystalline polymer (TLCP, poly(ester amide), 20 wt%) and a maleic anhydride grafted polypropylene (2 wt%) (MAPP) were studied under various processing conditions. TLCP was pre-blended with MAPP first and then the binary one blended again with Ny6. The processing temperature of the second mixing was varied. Thermal properties show the partial miscibility of the ternary blend. The morphology of the TLCP phase in the first blending shows mostly in the fibril bundle shape, but varies between droplets and oriented fibrils after the second processing. Some of TLCP phase lost the fibril morphology during the second processing stage. The morphology variation invokes the change in tensile properties. Low extrusion temperature (270$\^{C}$) provides more fibril shapes, which are associated with less deformation in the second stage. The processing temperature effect was more evident when the draw ratio was high. High drawing was applicable due to the stabilizing action of tile compatibilizer.

  • PDF

Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation

  • Bhak, Ghi-Bom;Choe, Young-Jun;Paik, Seung-R.
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.541-551
    • /
    • 2009
  • Amyloidogenesis defines a condition in which a soluble and innocuous protein turns to insoluble protein aggregates known as amyloid fibrils. This protein suprastructure derived via chemically specific molecular self-assembly process has been commonly observed in various neurodegenerative disorders such as Alzheimer's, Parkinson's, and Prion diseases. Although the major culprit for the cellular degeneration in the diseases remains unsettled, amyloidogenesis is considered to be etiologically involved. Recent recognition of fibrillar polymorphism observed mostly from in vitro amyloidogeneses may indicate that multiple mechanisms for the amyloid fibril formation would be operated. Nucleation-dependent fibrillation is the prevalent model for assessing the self-assembly process. Following thermodynamically unfavorable seed formation, monomeric polypeptides bind to the seeds by exerting structural adjustments to the template, which leads to accelerated amyloid fibril formation. In this review, we propose another in vitro model of amyloidogenesis named double-concerted fibrillation. Here, two consecutive assembly processes of monomers and subsequent oligomeric species are responsible for the amyloid fibril formation of $\alpha$-synuclein, a pathological component of Parkinson's disease, following structural rearrangement within the oligomers which then act as a growing unit for the fibrillation.

Production and Amyloid fibril formation of tandem repeats of recombinant Yeast Prion like protein fragment

  • Kim, Yong-Ae;Park, Jae-Joon;Hwang, Jung-Hyun;Park, Tae-Joon
    • 한국자기공명학회논문지
    • /
    • 제15권2호
    • /
    • pp.175-186
    • /
    • 2011
  • Amyloid fibrils have long been known to be the well known ${\alpha}$-helix to ${\beta}$-sheet transition characterizing the conversion of cellular to scrapie forms of the prion protein. A very short sequence of Yeast prion-like protein, GNNQQNY (SupN), is responsible for aggregation that induces diseases. KSI-fused tandem repeats of SupN vector are constructed and used to express SupN peptide in Escherichia coli (E.Coli). A method for a production, purification, and cleavage of tandem repeats of recombinant isotopically enriched SupN in E. coli is described. This method yields as much as 20 mg/L of isotope-enriched fusion proteins in minimal media. Synthetic SupN peptides and $^{13}C$ Gly labeled SupN peptides are studied by Congo Red staining, Birefringence and transmission electron microscopy to characterize amyloid fibril formation. To get a better understanding of aggregation-structure relationship of 7 residues of Yeast prion-like protein, the change of a conformational structure will be studied by $^{13}C$ solid-state nmr spectroscopy as powder of both amorphous and fibrillar forms.

Graft Transmission and Cytopathology of Pear Black Necrotic Leaf Spot (PBNLS) Disease

  • Nam, Ki-Woong;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • 제18권6호
    • /
    • pp.301-307
    • /
    • 2002
  • Graft transmission and cytopathological studies of a severe pear disease, pear black necrotic leafspot(PBNLS), were carried out to determine the causal agent of the disease. No evidence was found that a fungal or bacterial pathogen could be the causal agent of the disease. Attempts to transmit the agent by sap-inoculation to other plants including herbaceous hosts failed. How-ever, the pathogen was readily graft-transmitted from symptomatic diseased pears to healthy pears. Graft transmission of the pathogen was also demonstrated by using an indicator plant, PS-95, developed in the laboratory through various grafting methods. Ultrastructural study of the disease revealed the consistent presence of flexuous rod-shaped virus-like particles (VLP) in the symptomatic leaves of both Niitaka cultivar and indicator pear, PS-95. The particles, approximately 12 nm in diameter with undetermined length, occurred in the cytoplasm of mesophyll parenchyma cells. Cells with VLPs also contained fibril-containing vesicles, which are common in cells infected with plant viruses with ssRNA genome. The vesicles were formed at the tonoplast. Based on the symptomatology, the presence of fibril-containing vesicles, and graft-transmissibility, it is believed that the VLPs that occurred on symptomatic leaves of black necrotic leafspot of pear are viral in nature, possibly those of a capillovirus.

Protective Effect of Citrate against $A{\beta}$-induced Neurotoxicity in PC12 Cells

  • Yang, Hyun-Duk;Son, Il-Hong;Lee, Sung-Soo;Park, Yong-Hoon
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.157-163
    • /
    • 2008
  • Formation of ${\beta}$-amyloid $(A{\beta})$ fibrils has been identified as one of the major characteristics of Alzheimer's disease (AD). Inhibition of $A{\beta}$ fibril formation in the CNS would be attractive therapeutic targets for the treatment of AD. Several small compounds that inhibit amyloid formation or amyloid neurotoxicity in vitro have been known. Citrate has surfactant function effect because of its molecular structure having high anionic charge density, in addition to the well-known antibacterial and antioxidant properties. Therefore, we hypothesized that citrate might have the inhibitory effect against $A{\beta}$ fibril formation in vitro and have the protective effect against $A{\beta}$-induced neurotoxicity in PC12 cells. We examined the effect of citrate against the formation of $A{\beta}$ fibrils by measuring the intensity of fluorescence in thioflavin-T (Th-T) assay of between $A{\beta}_{25-35}$ groups treated with citrate and the control with $A{\beta}_{25-35}$ alone. The neuroprotective effect of citrate against $A{\beta}$-induced toxicity in PC12 cells was investigated using the WST-1 assay. Fluorescence spectroscopy showed that citrate inhibited dose-dependently the formation of $A{\beta}$ fibrils from ${\beta}$-amyloid peptides. The inhibition percentages of $A{\beta}$ fibril formation by citrate (1, 2.5, and 5 mM) were 31%, 60%, and 68% at 7 days, respectively in thioflavin-T (Th-T) assay. WST-1 assay revealed that the toxic effect of $A{\beta}_{25-35}$ was reduced, in a dose-dependent manner to citrate. The percentages of neuroprotection by citrate (1, 2.5, and 5 mM) against $A{\beta}-induced$ toxicity were 19%, 31 %, and 34%, respectively. We report that citrate inhibits the formation of $A{\beta}$ fibrils in vitro and has neuroprotective effect against $A{\beta}$-induced toxicity in PC12 cells. Neuroprotective effects of citrate against $A{\beta}$ might be, to some extent, attributable to its inhibition of $A{\beta}$ fibril formation. Although the mechanism of anti-amyloidogenic activity is not clear, the possible mechanism is that citrate might have two effects, salting-in and surfactant effects. These results suggest that citrate could be of potential therapeutic value in Alzheimer's disease.