• 제목/요약/키워드: Fibre

검색결과 814건 처리시간 0.025초

The Role of Rumen Fungi in Fibre Digestion - Review -

  • Ho, Y.W.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.104-112
    • /
    • 1999
  • Since the anaerobic rumen fungi were discovered in the rumen of a sheep over two decades ago, they have been reported in a wide range of herbivores fud on high fibre diets. The extensive colonisation and degradation of fibrous plant tissues by the fungi suggest that they have a role in fibre digestion. All rumen fungi studied so far are fibrolytic. They produce a range of hydrolytic enzymes, which include the cellulases, hemicellulases, pectinases and phenolic acid esterases, to enable them to invade and degrade the lignocellulosic plant tissues. Although rumen fungi may not seem to be essential to general rumen function since they may be absent in animals fed on low fibre diets, they, nevertheless, could contribute to the digestion of high-fibre poor-quality forages.

Scanning Probe Microscopy를 이용한 고해 효과 연구 (Study of Refining Effects on Pulp Fibre by Scanning Probe Microscopy(SPM))

  • 김철환;;안경구
    • 펄프종이기술
    • /
    • 제30권4호
    • /
    • pp.49-58
    • /
    • 1998
  • The SPM could image the most detailed microstructure of a sample in a wet and dry state by measuring the interaction between the atoms on the sample surface and the extremely sharp probe tip. The refined fibre exhibited large wrinkles formed by fibrillar bundles, the disintegrated fibres extensively showed “scale-like features”. By using the Non-Contact Atomic Force Microscopy (NC-AFM) and Contact Atomic Force Microscopy (C-AFM) including Phase Detection Microscopy (PDM) and Force Modulation Microscopy (FMM), it was possible to investigate surface topography, surface roughness and mechanical property (hardness or visco-elasticity) of fibre surface in detail. The PDM and FMM images showed that the disintegrated only fibre displayed uniform mechanical properties, whereas the refined one did not. The surface roughness of pulp fibres was higher in refined fibres than in disintegrated fibres due to the presence of external fibrils. These SPM images would be used to provide visual evidence of morphological change of a single fibre created during mechanical treatments such as refining, drying, calendering and so on.

  • PDF

Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures

  • Kumar, B. Ravi;Srimannarayana, C.H. Naga;Krishnan, K. Aniruth;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.515-520
    • /
    • 2020
  • In the modern era, the world is facing unprecedented challenges in form of environmental pollution and international agencies are forcing scientists and materialists to look for green materials and structures to counter this problem. Composites based on renewable sources like plant based fibres, vegetable fibres are finding increasing use in interior components of automobile vehicles, aircraft, and building construction. In the present study, jute and flax fibre based composites were developed and tested for assessing their suitability for possible applications in interior cabin and parts of automobile and aerospace vehicles. Matrix system involves epoxy as resin and fibre weight fractions used were 45% and 55% respectively. Composites samples were prepared as per American society for testing and materials (ASTM) standard and were tested for individual fiber tensile strength, composite tensile strength, and flexural strength to analyse its behavior under various loading conditions. The results revealed that the Jute fibre composites possess enhanced mechanical properties over Flax fibre composites.

Nonlinear finite element analysis of fibre reinforced concrete deep beams

  • Swaddiwudhipong, S.
    • Structural Engineering and Mechanics
    • /
    • 제4권4호
    • /
    • pp.437-450
    • /
    • 1996
  • A study on the behaviour of fibre reinforced concrete deep beams with and without web openings is carried out using nonlinear finite element analysis. Eight node isoparametric plane stress elements are employed to model the fibre reinforced concrete materials. Steel bars are treated using a compatible three node truss elements. The constitutive equations for fibre reinforced concrete materials take into account the softening effect of co-existing shear strains. Element stiffness at each step is formulated based on the tangent modulus at the current level of principal strains. Transformation between principal directions and global coordinate system is imposed. Comparison of analytical results with experimental values indicates reasonably good agreement. The proposed numerical model can be used to study the behaviour of this composite structures of practically any geometries.

PERFORMANCE OF LAMB FED UREA TREATED SAGO FIBRE BASED DIET WITH SUPPLEMENTS

  • Yadav, D.P.;Mahyuddin, M.;Jelan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권2호
    • /
    • pp.183-186
    • /
    • 1991
  • Lamb fed 2% urea treated sago fibre and corn at 1.5 : 1 ratio (sago fibre + corn) and supplemented with fishmeal at 0, 50, 100, 150 g/head/day, gained 68.6, 139.6, 158.6 and 166.3 g/day, respectively. A simple feed cost analysis indicated that the sago with supplementation of fishmeal at 50 g/head/day could be an efficient and economic diet for sheep. The result showed that energy and protein supplements are necessary for reasonable performance of the sheep fed on urea treated sago fibre.

분포형 광섬유센서를 활용한 지표이동 측정에 관한 연구 (A Study of Slope Movements Using Fibre Optic Distributed Deformation Sensor)

  • 장기태
    • 지구물리
    • /
    • 제8권2호
    • /
    • pp.75-80
    • /
    • 2005
  • Optical fibre sensors have shown a potential to serve real time health monitoring of Slope and structure. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory on slope and field tests using a novel optical sensor based on Brillouin scattering and PVC pipe. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Slope.

  • PDF

분포형 광섬유센서를 활용한 지표이동 측정에 관한 연구 (A Study of Slope Movements using Fibre Optic Distributed Deformation Sensor)

  • 장기태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.475-482
    • /
    • 2002
  • Optical fibre sensors have shown a potential to serve real time health monitoring of Slope and structure. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory on slope and field tests using a novel optical sensor based on Brillouin scattering and PVC pipe. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Slope.

  • PDF

Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications

  • Antony, Sheedev;Cherouat, Abel;Montay, Guillaume
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.87-103
    • /
    • 2019
  • Recently, natural fibre composites are widely used in aerospace industries due to their good specific mechanical properties, better acoustic properties, light weight, readily availability, biodegradability, recyclability, etc. In this study, the hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure were proposed for aerospace applications. Firstly, the hemp fibre woven fabrics based honeycomb sandwich structures were manufactured and experimental mechanical tests (compressive and flexural) were performed in the laboratory. Numerical simulation was also performed and analysed to validate the proposed methodology. Different complex shaped aircraft part CAD models were created and numerical analysis was carried out in order to have a better understanding about the complex honeycomb sandwich structures.

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.