• Title/Summary/Keyword: Fiber-textured

Search Result 18, Processing Time 0.019 seconds

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.

Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer (아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성)

  • Ahn, Dajeong;Choi, Chulhoon;Lee, Jaewoong;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.

The Physical Properties of Super Bulky Yarn According to Textured Condition (Super Bulky Yarn의 사가공 조건에 따른 물성변화)

  • Park, Myung-Soo
    • Fashion & Textile Research Journal
    • /
    • v.12 no.4
    • /
    • pp.500-507
    • /
    • 2010
  • In this study, physical properties were studied by using latent stretching yarn in order to develop the texturing yarn technique for super bulky yarn, which is better in bulkiness and handle than natural wool and also adds property of synthetic fiber to natural wool. In order to obtain textured conditions by analysing basic properties for manufacturing DTY yarn with super bulky property, DTY 50d/12 after spinning latent yarn spined POY 80d/12 was obtained under the two conditions of (i) false twist(T/M) level 3 in DTY texturing and (ii) draw ratio level 4 in draw texturing. For DTY texturing yarn, Elongation rate increased as the heat treatment time and temperatures increased. In addition, shrinkage became higher as false twist was higher, so that elongation rate became lower. When annealing became longer in time and higher in temperature, initial modulus increased. In addition, as the count of false twist increased, the initial modulus showed higher values. For draw texturing yarn, under the conditions of heat temperature 180 and heating time 30 minutes, shrinkage rate in draw ratio 1.55 and 1.6 draw ratio was 7%, and that in 1.65 and 1.7 draw ratio was 8.5%. High draw ratio samples' tenacity was much influenced by heating time and temperature, but low draw ratio samples' tenacity was influenced not by treated time, but by treated temperature.

Effect of Heat-treatment on Stretch of Poly(trimethylene terephthalate) Woven Fabric

  • Yoon, Kwan-Han;Jeong, Young-Jin;Min, Byung-Ghyl
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.84-88
    • /
    • 2003
  • The properties of a woven fabric made of poly(trimethylene terephthalate) (PTT) were investigated. The PTT fab-ric of draw textured yarn (DTY) showed excellent stretch as good as a fabric containing spandex. However, the unique stretch of the PTT fabric reduced dramatically by simple heat-treatment even at as low as $80^{\circ}C$. To understand the phenomenon, the crimp rigidity of the DTY was observed by SEM. It was found that the drastic reduction of stretch was caused by irreversible uncrimping of PTT DTY after heat-treatment. Conclusively, it is of importance to optimize the texturing conditions for PTT DTY to make the crimp more stable.

Effect of Fabric Structure and Plating Method on EMI Shielding Property of Conductive Fabric (도전섬유의 전자파 차폐특성에 미치는 섬유구조 및 도금방법의 영향)

  • Kim, DongHyun;Lee, SeongJoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.149-157
    • /
    • 2015
  • We investigated the effects of the fabric structure or the kinds of plated metals on the electromagnetic interference shielding effectiveness (EMI SE) by means of electroless plating on polyester fabric. We found that the weight of deposited metal, EMI SE, and flexibility of the conductive fabric for EMI shield is affected by morphology of fabric and structure of fiber. The EMI SE of conductive fabric plated Ni/Cu/Ni by electroless plating method on draw textured yarn (DTY) polyester was in the practically useful range of above 70 dB over a wide frequency range of 10 MHz to 1.0 GHz at the surface resistivity of $0.05{\Omega}/{\square}$. Au or Ag plated conductive fabric by immersion plating method is not able to provide for a good EMI SE.

A Study on the Seam Strength and Resistance to Slippage of Yarns of Lining Fabrics (의류 안감의 봉합강도 및 실 미끄럼저항에 관한 연구)

  • Uh, Mi-Kyung;Park, Myung-Ja
    • Fashion & Textile Research Journal
    • /
    • v.7 no.4
    • /
    • pp.433-438
    • /
    • 2005
  • Seven commercial lining fabrics normally used in a market were selected: plain-weave fabrics with polyester, nylon, rayon and acetate fiber, and polyester textured yarn, in addition, polyester fabrics with plain, twill and satin weave. Then seam strength, seam efficiency, resistance to slippage of yarns and type of seam destruction were examined related to endurance by textiles in sewing capability of the lining fabrics. In results, as tensile strength was greater, seam strength got greater, which shows tensile strength and seam strength have close relationship. Tensile and seam strength of acetate fabric were the least, but seam efficiency was the greatest. It presents that strong tensile and seam strengths do not show high seam efficiency at the same time. Various types of seam destruction have been shown. When tensile strength of the sewing thread was greater than tensile strength of fabric, fabric destruction was occurred before the sewing thread destruction. When tensile strength of the fabric was greater than seam strength, the sewing thread destruction was occurred. Resistance to slippage of yarns got greater as tensile strength of the fabric got greater. The plain-weave fabric, which tensile strength of fabric was smaller, showed the greater resistance to slippage of yarns than twill and satin weave fabrics. The stretch fabric revealed the optimal lining fabric with the greatest resistance to slippage of yarns.

A Study on the Handle and Texture of Artificial Suede (인조 스웨이드의 handle 및 질감에 관한 연구)

  • 신경인;김종준
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.1
    • /
    • pp.128-137
    • /
    • 2000
  • A range of suede-like samples were collected including woven fabric type, nonwoven fabric type, and natural suede(sheep). The surface textures of these suede-like fabrics are rather diverse and different from the plain filament type fabrics since there are a lot of fine surface free fiber ends. Physical and mechanical measurements were carried using the KES equipments. Based on the Kawabata-Niwa translational equation, primary hand values and THV were calculated. Uniaxial tensile tests were performed. Using glossmeter, the reflectance pattern was analyzed at different incidence and receiving angles. In order to capture the surface images of the specimens, a CCD camera and frame grabber connected to a PC were employed. The reflectance uniformity of the images was measured with line-profile analysis and standard deviation values of the profile of the images were calculated. After the multiscale wavelet transfermation, correlation among the transformed image was analyzed at each scale. The reflectance uniformity of the natural suede was better than that of nonwoven type suede, while that of woven type suede was the last among the selected three samples(natural suede, nonwoven type, woven type). The correlation analysis among images has shown the possibility of using the wavelet transformation of the images as one of the measures to detect similarities among the textured specimens.

  • PDF

Evaluation of Rheological and Sensory Characteristics of Plant-Based Meat Analog with Comparison to Beef and Pork

  • Bakhsh, Allah;Lee, Se-Jin;Lee, Eun-Yeong;Hwang, Young-Hwa;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.983-996
    • /
    • 2021
  • This study explored the physicochemical, textural, and sensorial properties of a meat analog (MA) as compared to beef and pork meats. Results illustrate that MA patties had lower moisture, fat, and protein content, as well as higher ash and crude fiber than beef and pork. Likewise, MA patties had a higher pH, lightness (L*), and redness (a*) than either beef or pork. Pork meat exhibited the highest released water (RW) and cooking loss (CL) values, followed closely by MA with beef displaying the lowest values. Regardless of patty type, the post-cooking diameter patties were reduced significantly (p<0.05). However, the Warner-Bratzler shear force (WBSF), hardness, chewiness, and gumminess of beef were significantly higher than that of either pork or MA. The visible appearance of MA patties had more porous and loose structures before and after cooking. Consequently, based on sensory parameters, MA patties demonstrated the higher values for appearance and firmness, followed by beef and pork respectively, although the difference was not statistically significant. Therefore, the current study demonstrated that some physicochemical, textural, and sensory characteristics of beef and pork exhibited the most similarity to MA.