• 제목/요약/키워드: Fiber-reinforced composite

검색결과 1,882건 처리시간 0.027초

슬러리법에 의한 탄소섬유보강 시멘트복합체의 제조에서 보강섬유와 계면결착제와의 상관특성 (Characteristics Correlations Between Fiber-Reinforced and Interfacial Adhesion in Carbon fiber reinforced Cement composite Prepared by Slurry Method.)

  • 최응규
    • 한국건축시공학회지
    • /
    • 제2권3호
    • /
    • pp.131-138
    • /
    • 2002
  • The objective of the study is to examine the characteristic correlations between reinforcing carbon fiber and interfacial adhesion agent since the interfacial adhesion strength between reinforcing carbon fiber and matrices is believed to be an essential element influencing the physical properties in carbon fiber reinforced cement composite using slurry method. The integrity of interfacial adhesion between reinforcing fiber and cement not only affects the quality of fiber reinforced cement composite but also influences to a large degree the physical properties of the cement composite when producing carbon fiber reinforced cement composite using slurry method. Having analyzed the physical properties 1.e., water content, tensile strength, flexural strength and flexural toughness of carbon fiber reinforced cement composite specimens, C-PAM(cation polyacrylamide) was determined to be an optimum interfacial adhesion agent. The study has also demonstrated that interfacial adhesion strength varies largely on the content and type of the reinforcing fiber. Judging from magnified view of the tensile shear cross-section using VMS(video microscope system), interfacial adhesion strength between reinforcing fiber and matrices is affected by the type of interfacial adhesion agent. According to the result of the experiments, C-PAM was determined to be an ideal interfacial adhesion agent when using carbon fiber in producing carbon fiber reinforced cement composite with the optimum content of carbon fiber being established.

변형속도에 따른 폴라아미드 섬유 및 후크형 강섬유 보강 시멘트 복합체의 인장특성 (Tensile Properties of Polyamide Fiber and Hooked Steel Fiber Reinforced Cementitious Composites by Strain Rate)

  • 이상규;김규용;황의철;손민재;백재욱;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2018
  • In this study, it evaluate the tensile properties of polyamide fiber reinforced cementitious composite and hooked steel fiber reinforced cementitious Composites by strain rate. Polyamide fiber reinforced cement composites (PAFRCC) and Hooked Steel Fiber Reinforced Cement Composite(HSFRCC) were fabricated. Each specimen was reinforced with 1.0 and 2.0vol% fiber. The length of the reinforced fiber was 30 mm for both fibers, and the tensile test specimen was made in dumbbell shape. As a result, the tensile strength of fiber in polyamide fiber and the mechanical bonding between fiber and matrix in hooked steel fiber are considered to be the main factors affecting tensile behavior of fiber reinforced cement composite.

  • PDF

Effect of molding condition on tensile properties of hemp fiber reinforced composite

  • Takemura, K.;Minekage, Y.
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.385-394
    • /
    • 2007
  • In this study, the effect of molding condition on the tensile properties for plain woven hemp fiber reinforced green composite was examined. The tensile properties of the composite were compared with those of the plain woven jute fiber composite fabricated by the same process. Emulsion type biodegradable resin or polypropylene sheet was used as matrix. The composites were processed by the compression molding where the molding temperature and its heating time were changed from 160 to $190^{\circ}C$ and from 15 to 25 min, respectively. The following results were obtained from the experiment. The tensile property of hemp fiber reinforced polypropylene is improved in comparison with polypropylene bulk. The strength of composite is about 2.6 times that of the resin bulk specimen. Hemp fiber is more effective than jute fiber as reinforcement for green composite from the viewpoint of strength. The molding temperature and time are suitable below $180^{\circ}C$ and 20 min for hemp fiber reinforced green composite. Hemp fiber green composite has a tendency to decrease its tensile strength when fiber content is over 50 wt%.

비정질 강섬유 보강 시멘트 복합체의 전자파 차폐성능 평가 (Evaluation of Electromagnetic Pulse Shielding Performance of Amorphous Metallic Fiber Reinforced Cement Composite)

  • 이상규;김규용;황의철;손민재;백재욱;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.50-51
    • /
    • 2018
  • In this study, it evaluate the electromagnetic pulse shielding performance of amorphous metallic fiber reinforced cement composite with other steel fiber reinforced cement composite. Hooked-ended steel fiber, smooth steel fiber and amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electromagnetic pulse shielding performance was evaluated by MIL-STD-188-125-1. As a result, shielding performance of amorphous metallic fiber reinforced cement composite was higher than Hooked-ended and smooth steel fiber reinforced cement composites. In addition, the relationship between the electrical conductivity and the electromagnetic pulse shielding performance of the cement composite was confirmed.

  • PDF

SiC Fiber 강화 다공질 반응 소결 탄화규소 Composite의 제조 및 기계적 특성 (Fabrication of SiC Fiber Reinforced Porous Reaction Bonded SiC Composite and Its Mechanical Properties)

  • 한재호;박상환
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.509-514
    • /
    • 2006
  • In this study, chopped Hi-Nicalon SiC fiber Reinforced Porous Reaction Bonded SiC (RBSC) composites and it fabrication process were developed by using Si melt infiltration process. The porosity and average pore size in fabricated chopped SiC fiber reinforced porous RBSC composites were in the range of $30{\sim}40%$ and $40-90{\mu}m$, which mainly determined by the SiC powder size used as starting material and amount of residual Si in porous composites. The maximum flexural strength of chopped SiC fiber reinforced porous RBSC composite was as high as 80 MPa. The delayed fracture behavior was observed in chopped SiC fiber reinforced porous RBSC composites upon 3-point bending strength test.

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.

Nonlinear behavior of fiber reinforced cracked composite beams

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.327-336
    • /
    • 2019
  • This paper presents geometrically nonlinear behavior of cracked fiber reinforced composite beams by using finite element method with and the first shear beam theory. Total Lagrangian approach is used in the nonlinear kinematic relations. The crack model is considered as the rotational spring which separate into two parts of beams. In the nonlinear solution, the Newton-Raphson is used with incremental displacement. The effects of fibre orientation angles, the volume fraction, the crack depth and locations of the cracks on the geometrically nonlinear deflections of fiber reinforced composite are examined and discussed in numerical results. Also, the difference between geometrically linear and nonlinear solutions for the cracked fiber reinforced composite beams.

하이브리드 섬유보강 시멘트복합체의 인장거동에 미치는 변형속도의 영향 (Effect of Strain Rate on Tensile Behavior of Hybrid Fiber Reinforced Cement-based Composites)

  • 손민재;김규용;이보경;이상규;김경태;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.122-123
    • /
    • 2017
  • In this study, the tensile behavior of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite' s tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

강섬유를 하이브리드 보강한 섬유보강 시멘트복합체의 인장특성에 미치는 변형속도의 영향 (Strain Rate Effect on the Tensile Properties of Steel Fiber Hybrid Reinforced Cement Composites)

  • 김인호;김규용;이상규;손민재;김경태;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.87-88
    • /
    • 2018
  • In this study, the tensile properties of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite's tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Partially encased composite columns using fiber reinforced concrete: experimental study

  • Pereira, Margot F.;De Nardin, Silvana;El. Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.909-927
    • /
    • 2020
  • This paper addresses the results of an experimental study involving 10 partially encased composite columns under concentric and eccentric compressive loads. Parameters such as slenderness ratio, ordinary reinforced concrete and fiber reinforced concrete, load eccentricity and bending axis were investigated. The specimens were tested to investigate the effects of replacing the ordinary reinforced concrete by fiber reinforced concrete on the load capacity and behavior of short and slender composite columns. Various characteristics such as load capacity, axial strains behavior, stiffness, strains on steel and concrete and failure mode are discussed. The main conclusions that may be drawn from all the test results is that the behavior and ultimate load are rather sensitive to the slenderness of the columns and to the eccentricity of loading, specially the bending axis. Experimental results also indicate that replacing the ordinary reinforced concrete by steel fiber reinforced concrete has no considerable effects on the load capacity and behavior of the short and slender columns and the proposed replacement presented very good results.