• Title/Summary/Keyword: Fiber-reinforced Concrete

Search Result 2,053, Processing Time 0.026 seconds

An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections

  • Xie, Qiang;Sinaei, Hamid;Shariati, Mahdi;Khorami, Majid;Mohamad, Edy Tonnizam;Bui, Dieu Tien
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.433-441
    • /
    • 2019
  • The aim of this research is reinforcing of concrete with variety of fiber reinforced polymer (FRP) configurations and investigates the load capacity and ductility of these connections using an experimental investigation. Six scaled-down RC exterior joints were tested under moderately monotonic loads. The results show that, the shape of the FRP had a different effect on the joint capacity and the connection ductility coefficient. The greatest effect on increasing the ductility factor was seen in the sample where two reinforcement plates were used on both sides of the beam web (RCS5 sample). For the sample with the presence of FRP plates at the top and bottom of the beam (RCS3 sample), the ductility factor was reduced even the load capacity of this sample increased. Except for the RCS3 sample, the rest of the samples exhibited an increase in the ductility factor due to the FRP reinforcement.

Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements

  • Selmi, Abdellatif;Ali, Raza
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.315-335
    • /
    • 2023
  • Limited studies are available on the mathematical estimates of the compressive strength (CS) of glass fiber-embedded polymer (glass-FRP) compressive elements. The present study has endeavored to estimate the CS of glass-FRP normal strength concrete (NSTC) compression elements (glass-FRP-NSTC) employing two various methodologies; mathematical modeling and artificial neural networks (ANNs). The dataset of 288 glass-FRP-NSTC compression elements was constructed from the various testing investigations available in the literature. Diverse equations for CS of glass-FRP-NSTC compression elements suggested in the previous research studies were evaluated employing the constructed dataset to examine their correctness. A new mathematical equation for the CS of glass-FRP-NSTC compression elements was put forwarded employing the procedures of curve-fitting and general regression in MATLAB. The newly suggested ANN equation was calibrated for various hidden layers and neurons to secure the optimized estimates. The suggested equations reported a good correlation among themselves and presented precise estimates compared with the estimates of the equations available in the literature with R2= 0.769, and R2 =0.9702 for the mathematical and ANN equations, respectively. The statistical comparison of diverse factors for the estimates of the projected equations also authenticated their high correctness for apprehending the CS of glass-FRP-NSTC compression elements. A broad parametric examination employing the projected ANN equation was also performed to examine the effect of diverse factors of the glass-FRP-NSTC compression elements.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Long-Term Degradation Mechanism of GFRP Dowel Bar for Jointed Concrete Pavement under Repeated Freezing-Thawing (동결융해 반복을 받는 콘크리트 포장용 GFRP 다웰바의 장기성능저하 메커니즘)

  • Won, Jong Pil;Jang, Chang Il;Park, Chan-Gi;Lee, Sang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.325-330
    • /
    • 2008
  • This study carried out the repeated freezing-thawing test in order to understand the long-term degradation mechanism of GFRP dowel bars. The mechanical property measured by shear test. In addition, analyzes repeated freezing-thawing degradation mechanism of GFRP dowel bars by observe the microstructure through Scanning Electron Microscope (SEM) and Gas Physisorption techniques. As the result of test, it was found that the mechanical property didn't decreased as the exposure time to water and repeated freezing-thawing environment. It shows clearly observed microstructure investigations.

Development Strengths of High Strength Headed Bars of RC and SFRC Exterior Beam-Column Joint (RC 및 SFRC 외부 보-기둥 접합부에 대한 고강도 확대머리 철근의 정착강도)

  • Duck-Young Jang;Jae-Won Jeong;Kang-Seok Lee;Seung-Hun Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.94-101
    • /
    • 2023
  • In this study, the development performance of the head bars, which is SD700, was experimentally evaluated at the RC (reinforced concrete) or SFRC (steel fiber reinforced concrete external beam-column joint. A total of 10 specimens were tested, and variables such as steel fibers, length of settlement, effective depth of the beam, and stirrups of the column were planned. As a result of the experiment, the specimens showed side-face blowout, concrete breakout, and shear failure depending on the experimental variables. In the RC series experiments with development length as a variable, it was confirmed that the development strength increased by 26.5~42.2% as the development length increased by 25-80%, which was not proportional to the development length. JD-based experiments with twice the effective depth of beams showed concrete breakout failure, reducing the maximum strength by 31.5% to 62% compared to the reference experiment. The S-series experiment, in which the spacing of the shear reinforcement around the enlarged head reinforcement was 1/2 times that of the reference experiment, increased the maximum strength by 8.4 to 9.7%. The concrete compressive strength of SFRC was evaluated to be 29.3% smaller than the concrete compressive strength of RC, but the development strength of SFRC specimens increased by 7.3% to 12.2%. Accordingly it was confirmed that the development performance of the head bar was greatly improved by reinforcing the steel fiber. Considering the results of 92% and 99% of the experimental maximum strength of the experiment arranged with 92% and 110% of the KDS-based settlement length, it is judged that the safety rate needs to be considered even more. In addition, it is required to present a design formula that considers the effective depth of the beam compared to the development length.

A Fundamental Study on the Load Resistance Characteristics of Revetment Concrete Block with Recycled Concrete Aggregate and GFRP Rebar (순환골재와 GFRP 보강근을 적용한 호안블럭의 하중저항특성에 관한 연구)

  • Kim, Yongjae;Kim, Jongho;Moon, Doyoung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.42-51
    • /
    • 2022
  • Aggregate resources in Korea are expected to run out owing to an increase in development demand and construction investment. Recycled concrete aggregates (RCA), extracted from waste concrete, have a lower quality than natural aggregates. However, RCA can produce concrete similar in quality to the normal concrete by aggregate pretreatment, use of admixtures, and quality control. RCA are most suitable for use in precast concrete products such as sidewalk blocks and revetment blocks. Herein, the feasibility of producing revetment blocks using recycled aggregate concrete (RAC), similar in quality to normal concrete, was analyzed. The amount of RCA was varied, and moderate high early strength cement and steam curing were used to produce the concrete test blocks. In the block test, the load resistance characteristics of the blocks were evaluated to determine optimal RAC and glass fiber reinforced polymer (GFRP) rebar compositions. Thus, the variable that reduced the cement content was determined at the same level as that of natural aggregate concrete by the control of steam curing. In the concrete block test, although this depends on the reinforcement ratio, the RAC block exhibited the same or better performance than a normal concrete block. Therefore, the low quality of RCA in RAC is no longer a problem when concrete mixing and curing are controlled and appropriate reinforcement is used.

Development of a System of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 아치구조를 이용한 가교 시스템 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.276-281
    • /
    • 2008
  • Glass-fiber reinforced polyester(GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood. One of passible applications of GFRP composite material is to build temporary bridges by assembling GFRP composite decks. In this paper, we develop a system of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several types of temporary arch bridges are suggested and verified by FE analysis.

  • PDF

Flexure-Compression Characteristics of Composite Marine Pile (복합소재 해상파일 모델의 휨압축 거동특성)

  • 이성우;손기훈;김성태;조남훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.21-24
    • /
    • 2001
  • Due to many advantage of advanced composite materials, researches on the composite marine pile is initiated. In this paper, structural characteristics of concrete filled glass fiber reinforced plastic (GFRP) composite pile model are studied. Through 4-point flexural test with various level of axial force, the performance of composite pile model was analyzed. Also numerical method to find P-M interaction diagram of composite pile was developed. It is showed that result of numerical method agrees well with experimental results, thus it is anticipated that numerical procedure can be utilized for design purpose.

  • PDF

The disposal process for scrapped FRP fishing vessels (감척으로 인한 FRP 어선의 처리방안)

  • Song, Jung-Hun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • A scrapped fiber-reinforced plastic(FRP) fishing vessel causes many environmental problems, because technology development for recycling FRP vessel has not been adequately addressed. FRP is a main material for constructing a small coastal fishing vessel that is an object of reduction policy. Therefore, the FRP wastes derived a scrapped fishing vessel are increasing. In this study, I investigated an effective disposal process for FRP through the analysis of the actual conditions of scrapped FRP fishing vessel. The treatment processes of scrapped FRP fishing vessel are carried out with oil-removing, dismantling, intermediated processing(crushing), and then reclaiming follows burning in the final processing in Korea. However, in Japan, several recycling methods have been developed, for example, the incineration including thermal recovery, the use of cement-reclamation, and the use of asphalt concrete aggregate, because the method of reclaiming after incinerating which is generally used in Korea produces a toxic by-product such as dioxin.

Design approach for a FRP structural formwork based steel-free modular bridge system

  • Cheng, Lijuan;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.561-584
    • /
    • 2006
  • The paper presents results of parametric studies, and an overall approach for the design of a modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate important relationships between critical configurational parameters and empirical equations based on numerical studies are presented. Results are discussed at the level of the individual deck and girder components, and as a slab-on-girder bridge system. An overall design methodology for the components and bridge system including critical performance checks is also presented.