• 제목/요약/키워드: Fiber-post

검색결과 442건 처리시간 0.022초

Fiber post의 Relining 방법과 시멘트 유형에 따른 Push-out Bond Strength의 비교 (Comparison of Push-out Bond Strengths According to Relining Procedure and Cement Type on Fiber Post)

  • 강현영;조소연;유미경;이광원;김경아
    • 구강회복응용과학지
    • /
    • 제27권3호
    • /
    • pp.253-265
    • /
    • 2011
  • 근관치료된 치아의 수복에서 fiber post 크기와 포스트 공간의 직경이 일치하지 않은 경우, 포스트 공간은 두꺼운 레진 시멘트로 채워지게 된다. 레진 시멘트가 두꺼워지면 시멘트 내에 기포가 형성되어 포스트 분리가 발생되기 쉽다. 이런 문제점을 해결하기 위한 방법은 composite resin을 이용하여 fiber post를 relining하는 것이다. 이렇게 형성된 해부학적 포스트는 포스트 공간에 잘 적합하고 시멘트의 두께를 감소시킨다. 이 연구의 목적은 relining 과정과 임상 과정의 간소화를 위해 사용되고 있는 luting agents 종류에 따른 fiber post의 push-out 결합 강도를 평가하는 것이다. 42개의 발치된 치아는 6개의 그룹(n=7)으로 나누어졌다. (A1: relined fiber post를 Luxacore/all-bond 2로 합착, A2: non-relined fiber post를 Luxacore/all-bond 2로 합착. B1: relined fiber post를 Calibra/XP-bond로 합착. B2: non-relined fiber post를 Calibra/XP-bond로 합착. C1: relined fiber post를 RelyX Unicem으로 합착. C2: non-relined fiber post를 RelyX Unicem으로 합착.) Push-out 결합 강도는 relining procedure와 cement type의 상호작용에 의해 영향을 받는 것으로 나타났다. relined fiber post 그룹이 non-relined fiber post 그룹보다 더 높은 결합 강도를 가지며 fiber post relining 과정은 결합강도에 유의한 영향을 가진다.(p<0.05) Luting agent에 따라 모든 그룹에서 RelyX Unicem의 결합강도가 Luxacore/All-bond 2와 Calibra/XP bond에 의한 것보다 유의하게 더 높았다(p<0.05).

Quartz fiber post의 물리적 특성에 관한 연구 (MECHANICAL PROPERTIES OF QUARTZ FIBER POST)

  • 이영수;강익제
    • 대한치과보철학회지
    • /
    • 제40권1호
    • /
    • pp.68-78
    • /
    • 2002
  • The post core system has been used for reconstructon of severely damaged crown by caries or trauma. But problems such as crown exfoliation, post core fracture and root fracture have been reported. Ideal mechanical properies of the post require high fracture strength, high elastic limit and high resistance against fatigue and corrosion Modulus of elasticity of the post should be similar with that of dentine. Low hardness is also required for the convenience of post removal in failure. Furthermore, the post itself must be translucent for the esthetical purpose. Several types of the post have been developed to satisfy the criteria above mentioned. The purpose of this study was to find out the mechanical properties of quartz fiber post by comparing with those of gold post and zirconia post. The results of this study were as follows : 1. Maximal fracture strength and stiffness of quartz fiber post were similar with those of gold post and zirconia post. 2. Young's modulus and hardness of quartz fiber post were lower than those of gold post and zirconia post. Mechanical property of quartz fiber post against post fracture was similar with that of gold post and zirconia post. Mechanical property of quartz fiber post against root fracture was higher than that of gold post and zirconia post. Quartz fiber post could be removed easily due to low hardness.

반복하중하에서의 carbon fiber post의 파절강도에 관한 연구 (A STUDY ON THE FRACTURE STRENGTH OF TEETH RESTORED WITH A CARBON FIBER POST UNDER CYCLIC LOADING)

  • 이양진
    • 대한치과보철학회지
    • /
    • 제38권5호
    • /
    • pp.640-649
    • /
    • 2000
  • In the restoration of endodontically treated teeth, carbon fiber post was recently introduced. The purpose of this in vitro study was to investigate the fracture strength of teeth restored with a pre-fabricated carbon fiber post in comparison with teeth restored with a prefabricated titanium post & custom cast gold post after cyclic loading in the different environment. A total of 30 recently extracted human central incisors of similar dimension with crowns removed were used. All teeth were placed into acrylic blocks and every steps for post and core fabrication were made accord-ing to manufacture's instruction. The post length and core dimensions were standardizd. All teeth were divided into 6 groups: 1) carbon fiber post / atmosphere, 2) titanium post / atmosphere, 3) gold post / atmosphere, 4) carbon fiber post / wet, 5) titanium post / wet, 6) gold post / wet. Carbon fiber post and titanium post were cemented in place using resin cement and cores were fabricated with Ti-Core. Custom cast gold post was made from Duralay pattern resin and cemented using resin cement, too. All specimens were thermocycled 10,000 times. After 50,000 cyclic loading, failure strength was measured using Instron testing machine. Kruskal-Wallis test followed by Mann-Whitney test was used to compare the mean fracture strength. Results were as follows : 1. All specimens showed lower fracture strength in wet environment after cyclic loading than in atmosphere condition, but did not reveal a significant difference. 2. There was no significant difference between carbon fiber post specimen and titanium post specimen in the same environment. 3. Gold cast post specimen showed significant different greater fracture strength than those of others in the same environment. 4. Carbon fiber post specimen showed no root fracture.

  • PDF

Dental fiber-post resin base material: a review

  • Lamichhane, Aashwini;Xu, Chun;Zhang, Fu-Qiang
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권1호
    • /
    • pp.60-65
    • /
    • 2014
  • Teeth that have short clinical crown, which are not alone enough to support the definitive restoration can be best treated using the post and core system. The advantages of fiber post over conventional metallic post materials have led to its wide acceptance. In addition to that the combination of aesthetic and mechanical benefits of fiber post has provided it with a rise in the field of dentistry. Also the results obtained from some clinical trials have encouraged the clinicians to use the fiber posts confidently. Fiber posts are manufactured from pre-stretched fibers impregnated within a resin matrix. The fibers could that be of carbon, glass/silica, and quartz, whereas Epoxy and bis-GMA are the most widely used resin bases. But recently studies are also found to be going on for polyimide as possible material for the fiber post resin base as a substitute for the conventional materials.

Retentive strength of different intracanal posts in restorations of anterior primary teeth: an in vitro study

  • Memarpour, Mahtab;Shafiei, Fereshteh;Abbaszadeh, Maryam
    • Restorative Dentistry and Endodontics
    • /
    • 제38권4호
    • /
    • pp.215-221
    • /
    • 2013
  • Objectives: To determine the retentive strength and failure mode of undercut composite post, glass fiber post and polyethylene fiber post luted with flowable composite resin and resin-cement. Materials and Methods: Coronal parts of 120 primary canine teeth were sectioned and specimens were treated endodontically. The teeth were randomly divided into 6 groups (n = 20). Prepared root canals received intracanal retainers with a short composite post, undercut composite post, glass fiber post luted with flowable resin or resin-cement, and polyethylene fiber post luted with flowable resin or resin-cement. After crown reconstruction, samples were tested for retentive strength and failure mode. Statistical analysis was done with one-way ANOVA and Tukey tests (p < 0.05). Results: There were statistically significant differences between groups (p = 0.001). Mean bond strength in the undercut group was significantly greater than in the short composite post (p = 0.030), and the glass fiber post (p = 0.001) and the polyethylene fiber post group luted with resin-cement (p = 0.008). However, the differences between the undercut group and the groups with flowable composite as the luting agent were not significant (p = 0.068, p = 0.557). Adhesive failure was more frequent in the fiber post groups. Conclusions: Although the composite post with undercutting showed the greatest resistance to dislodgement, fiber posts cemented with flowable composite resin provided acceptable results in terms of retentive strength and fracture mode.

합성섬유 보강 콘크리트 보의 후균열 거동 예측에 관한 연구 (Prediction of Post-cracking Behavior of Synthetic Fiber Reinforced Concrete Beams)

  • 오병환;김지철;박대균;한일영;김방래;유홍종
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.587-592
    • /
    • 2002
  • Fiber reinforced concrete has been used for tunnel lining and rehabilitation of old structures. Recently, structural synthetic fiber was developed to overcome the corrosive properties of steel fibers. Fibers play a role to increase the tensile and cracking resistance of concrete structures. The Post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of the present study is to develop a realistic analysis method for post cracking behavior of synthetic fiber reinforced concrete members.

  • PDF

Influence of modification in core building procedure on fracture strength and failure patterns of premolars restored with fiber post and composite core

  • Kim, Young-Hoi;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2012
  • PURPOSE. The influence of the modified process in the fiber-reinforced post and resin core foundation treatment on the fracture resistance and failure pattern of premolar was tested in this study. MATERIALS AND METHODS. Thirty-six human mandibular premolars were divided into 4 groups (n = 9). In group DCT, the quartz fibre post (D.T. Light-post) was cemented with resin cement (DUO-LINK) and a core foundation was formed with composite resin (LIGHT-CORE). In group DMO and DMT, resin cement (DUO-LINK) was used for post (D.T. Lightpost) cementation and core foundation; in group DMO, these procedures were performed simultaneously in one step, while DMT group was accomplished in separated two steps. In group LCT, the glass fiber post (LuxaPost) cementation and core foundation was accomplished with composite resin (LuxaCore-Dual) in separated procedures. Tooth were prepared with 2 mm ferrule and restored with nickel-chromium crowns. A static loading test was carried out and loads were applied to the buccal surface of the buccal cusp at a 45 degree inclination to the long axis of the tooth until failure occurred. The data were analyzed with MANOVA (${\alpha}$= .05). The failure pattern was observed and classified as either favorable (allowing repair) or unfavorable (not allowing repair). RESULTS. The mean fracture strength was highest in group DCT followed in descending order by groups DMO, DMT, and LCT. However, there were no significant differences in fracture strength between the groups. A higher prevalence of favorable fractures was detected in group DMT but there were no significant differences between the groups. CONCLUSION. The change of post or core foundation method does not appear to influence the fracture strength and failure patterns.

Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement

  • Kim, Hyun-Dong;Lee, Joo-Hee;Ahn, Kang-Min;Kim, Hee-Sun;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.104-109
    • /
    • 2013
  • PURPOSE. Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiberreinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined. MATERIALS AND METHODS. Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and three surface treatments (no treatment; air drying; drying at $38^{\circ}C$). Every specimen were bonded with dual-curing resin cement (Variolink N) and stored in distilled water for 24 hours at $37^{\circ}C$. Shear-bond strength (MPa) between the fiber post and the resin cement were measured using universal testing device. The data were analyzed with 1-way ANOVA and by multiple comparisons according to Tukey's HSD (${\alpha}$=0.05). The effect of surface treatment, fiber post type, and the interactions between these two factors were analyzed using 2-way ANOVA and independent sample T-tests. RESULTS. Silanization of the FRC Postec Plus significantly increased bond strength compared with the respective non-treated control, whereas no effect was determined for the D.T. Light Post. Heat drying the silane coupling agent on to the fiberreinforced post did not significantly improve bond strength compared to air-syringe drying. CONCLUSION. The bond strength between the fiber-reinforced post and the resin cement was significantly increased with silanization in regards to the FRC Postec Plus post. Bond strength was not significantly improved by heat activation of the silane coupling agent.

치주지지가 감소된 상태에서 섬유강화형 포스트로 수복한 치아의 실패양상 분석 (AN ANALYSIS OF FAILURE MODE OF TEETH RESTORED WITH FIBER-REINFORCED POSTS UNDER THE CONDITION OF BONY RESORPTION)

  • 이병우;이양진;조리라;박찬진
    • 대한치과보철학회지
    • /
    • 제41권2호
    • /
    • pp.232-242
    • /
    • 2003
  • Statement of problem : Fiber-reinforced posts have lower modulus of elasticity than titanium post or cast post-core. With this similar elasticity to that of dentin, fiber-reinforced posts have been known to have a tendency to reduce the risk of root fracture. However, there were few studies on the teeth restored with fiber-reinforced posts under the condition of reduced periodontal support. Purpose : The purpose of this study was to evaluate the fracture strength and failure mode of endodontically treated teeth restored with fiber-reinforced posts and titanium posts under the condition of reduced periodontal support. Material and method : Extracted human maxillary incisor roots were divided into 3 groups (group 1 carbon fiber post, group 2 : glass fiber post, and group 3 : titanium alloy post). After coronectomy and endodontic treatment, teeth were restored with each post systems and resin core according to the manufacturer's recommendation. Then, teeth with simulated periodontal ligament were embedded in the acrylic resin blocks at the level of 4 mm below the cemento-enamel junction. Each specimen was exposed to $10^5$ load cycles with average 30 N force in $36.5^{\circ}C$ water using a computer-controlled chewing simulator. Loads were applied at $45^{\circ}$ angle to the long axis of the teeth. After cyclic loading, teeth were subjected a compressive load until failure at a crosshead speed of 0.5 mm/min. Fracture strength (N) and failure mode were examined. The fracture strength was analyzed with one-way ANOVA and the Scheffe adjustment at the 95% significance level. Results and conclusion : The results were as follows. 1. There was no statistically significant difference in the mean fracture strength among the groups (P<.05). 2. Carbon fiber post and glass fiber post group showed less root fracture tendency than control group. 3. All specimens with root fractures showed fracture lines above the level of acrylic resin block, except for only one specimen in group 3.

미세입자 분사마모 표면처리가 Fiber-Reinforced Composite 포스트의 굴곡 강도에 미치는 영향 (Influence of airborne-particle abrasion on flexural strength of fiber-reinforced composite post)

  • 심은주;김진우;조경모;박세희
    • 구강회복응용과학지
    • /
    • 제32권1호
    • /
    • pp.24-31
    • /
    • 2016
  • 목적: 미세입자 분사마모 표면처리가 Fiber-Reinforced Composite (FRC) 포스트의 굴곡강도에 미치는 영향을 평가하는 것이다. 연구 재료 및 방법: 두 종류의 FRC 포스트 (DT Light Post, Size 2, Bisco Inc. / RelyX Fiber Post, Size 3, 3M ESPE)를 사용하여 표면처리에 따라 6개의 그룹으로 무작위 분류하였다. 표면처리를 위해 $30{\mu}m$ Rocatec Soft와 $50{\mu}m$ aluminum oxide를 사용하였다. 표면처리 후 편평한 5 mm 부분을 만능시험기로 3점 굽힘시험을 시행하여 FRC 포스트의 굴곡강도와 굴곡계수를 측정하고 통계분석하였다. 결과: FRC포스트의 미세입자 분사마모 표면처리가 FRC포스트의 굴곡강도와 굴곡계수에는 영향을 미치지 않음을 알 수 있었다. 결론: 임상가들이 FRC포스트에 대하여 미세입자 분사마모 표면처리를 하여도 포스트의 굴곡강도와 굴곡계수에는 영향을 미치지 않으면서 접착강도를 높일 수 있을 근거 중의 하나가 될 수 있을 것이다.