• Title/Summary/Keyword: Fiber-Reinforced Materials

Search Result 1,505, Processing Time 0.03 seconds

Nonlinear shear-flexure-interaction RC frame element on Winkler-Pasternak foundation

  • Suchart Limkatanyu;Worathep Sae-Long;Nattapong Damrongwiriyanupap;Piti Sukontasukkul;Thanongsak Imjai;Thanakorn Chompoorat;Chayanon Hansapinyo
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • This paper proposes a novel frame element on Winkler-Pasternak foundation for analysis of a non-ductile reinforced concrete (RC) member resting on foundation. These structural members represent flexural-shear critical members, which are commonly found in existing buildings designed and constructed with the old seismic design standards (inadequately detailed transverse reinforcement). As a result, these structures always experience shear failure or flexure-shear failure under seismic loading. To predict the characteristics of these non-ductile structures, efficient numerical models are required. Therefore, the novel frame element on Winkler-Pasternak foundation with inclusion of the shear-flexure interaction effect is developed in this study. The proposed model is derived within the framework of a displacement-based formulation and fiber section model under Timoshenko beam theory. Uniaxial nonlinear material constitutive models are employed to represent the characteristics of non-ductile RC frame and the underlying foundation. The shear-flexure interaction effect is expressed within the shear constitutive model based on the UCSD shear-strength model as demonstrated in this paper. From several features of the presented model, the proposed model is simple but able to capture several salient characteristics of the non-ductile RC frame resting on foundation, such as failure behavior, soil-structure interaction, and shear-flexure interaction. This confirms through two numerical simulations.

A Study on Failure Strength of the Hybrid Composite Joint (복합재 하이브리드 조인트의 파손강도에 관한 연구)

  • Lee, Young-Hwan;Park, Jae-Hyun;Ahn, Jeoung-Hee;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure strengths of the hybrid composite joints which were composed of a combination of an adhesive joint and a mechanical joint were evaluated and predicted. The 10 hybrid joint specimens which have different w/d, e/d and adherend thickness were manufactured and tested. The damage zone theory and the failure area index method were used for the failure prediction of the adhesive joint and the mechanical joint, respectively and the hybrid joints were assumed to be failures if either of the two failure criteria was satisfied. From the results of experiments and analyses, the failure strengths of the hybrid joints could be predicted to within 25.5%.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

A Strategy of a Gap Block Design in the CFRP Double Roller to Minimize Defects during the Product Conveyance (제품 이송 시 결함 최소화를 위한 CFRP 이중 롤러의 Gap block 설계 전략)

  • Seung-Ji Yang;Young-june Park;Sung-Eun Kim;Jun-Geol Ahn;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • Due to the structural characteristic of a double roller, the double roller can have various deformation behaviors depending on a gap block design, even if dimensions and loading conditions for the double roller are the same. Based on this feature, we propose a strategy for designing the gap block of the carbon-fiber reinforced plastic (CFRP) double roller to minimize defects (e.g., sagging and wrinkling), which can be raised during the product conveying process, with the pursue of the lightweight design. In the suggested strategy, analysis cases are first selected by considering main design parameters and engineering tolerances of the gap block, and then deformation behaviors of these selected cases are extracted using the finite element method (FEM). Here, to obtain the optimal gap block parameters that satisfy the purpose of this study, deformation deviations in the contact area are calculated and compared using the extracted deformation behaviors. Note that the contact area in this work is located between the product and the roller. As a result, through the design method of the gap block proposed in this work, it is possible to construct the CFRP double roller that can significantly decrease the defects without changing the overall sizes of the roller. A detailed method is suggested herein, and the results are evaluated in a numerical way.

Homogenization of Plastic Behavior of Metallic Particle/Epoxy Composite Adhesive for Cold Spray Deposition (저온 분사 공정을 위한 금속입자/에폭시 복합재료 접착제의 소성 거동의 균질화 기법 연구)

  • Yong-Jun Cho;Jae-An Jeon;Kinal Kim;Po-Lun Feng;Steven Nutt;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2023
  • A combination of a metallic mesh and an adhesive layer of metallic particle/epoxy composite was introduced as an intermediate layer to enhance the adhesion between cold-sprayed particles and fiber-reinforced composites (FRCs). Aluminum was considered for both the metallic particles in the adhesive and the metallic mesh. To predict the mechanical characteristics of the intermediate bond layer under a high strain rate, the properties of the adhesive layer needed to be calculated or measured. Therefore, in this study, the Al particle/epoxy adhesive was homogenized by using a rule of mixture. To verify the homogenization, the penetration depth, and the thickness decrease after the cold spray deposition from the undeformed surface, was monitored with FE analysis and compared with experimental observation. The comparison displayed that the penetration depth was comparable to the diameters of one cold spray particle, and thus the homogenization approach can be reasonable for the prediction of the stress level of particulate polymer composite interlayer under a high strain rate for cold spray processing.

Effect of Mechanical and Toughening Characteristics of Epoxy/Carbon Fiber Composite by Polyamide 6 Particles, CTBN Addition Technology (Polyamide 6 입자 및 CTBN 첨가 기술에 따른 에폭시/탄소섬유 복합재의 강인화 효과 및 기계적 특성)

  • Sung-Youl Bae;Kyo-Moon Lee;Sanjay Kumar;Ji-Hun Seok;Jae-Wan Choi;Woo-Hyuk Son;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.355-360
    • /
    • 2023
  • Epoxy-based carbon fibers reinforced plastic (CFRP) exhibit limitations in their suitability for industrial applications due to high brittleness characteristics. To address this challenge, extensive investigations are underway to enhance their toughness properties. This research focuses on evaluating the toughening mechanisms achieved by Polyamide 6 particles(p-PA6) and Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) elastomer, with a specific emphasis on utilizing minimal additive quantities. The study explores the impact of varying concentrations of p-PA6 and CTBN additives, namely 0.5, 1, 2.5, and 5 phr, through comprehensive Mode I fracture toughness and tensile strength analyses. The inclusion of p-PA6 demonstrated improvements in toughness when introduced at a relatively low content of 1phr. This improvement manifested as a sustained fracture behavior, contributing to enhanced toughness, while simultaneously maintaining the material's tensile strength. Furthermore, the investigation revealed that the incorporation of p-PA6 affected in particle aggregation, thus influencing the overall toughening mechanism. Incorporation of CTBN, an elastomeric modifier, exhibited a pronounced increase in fracture toughness at higher concentrations of 2.5 phr and beyond. However, this increase in toughness was accompanied by a reduction in tensile strength, resulting in fracture behavior similar to conventional CFRP exhibiting brittleness. The synergy between pPA6, CTBN and CFRP appeared to marginally enhance tensile strength under specific content conditions. As a result of this study, optimized conditions for the application of the p-PA6, CTBN toughening technology have been identified and established.

Effect of a Lightweight Hull Material and an Electric Propulsion System on Weight Reduction: Application to a 45ft CFRP Electric Yacht (CFRP 선체소재와 전기추진체계가 소형선박의 경량화에 미치는 효과)

  • Oh, Daekyun;Jung, Seungho;Jeong, Sookhyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.818-824
    • /
    • 2018
  • CFRP is often used as lightweight hull material for luxury yachts or special-service ships. An electric propulsion system is also eco-friendly, and has been trialled to equip a small vessel as its main propulsion. In this study, replacing the hull materials and propulsion system with CFRP and electric motors, we made an estimate of the effect of weight reduction and compared it to the original design, for this purpose a case study was conducted on a 45-ft yacht. When redesigning structures with CFRP, we applied the reinforcement content of the carbon fiber in the same way as the original (GC = 0.4), and when changing to the electric propulsion system, we designed motors and battery packs to achieve the same performance as the original. The result showed that CFRP and the electric propulsion system could make the structural and machinery weights 45 % and 58 % lighter, respectively. However, in terms of efficiency, it was confirmed that the electric propulsion system is practically inefficient because it requires a huge amount of battery packs for the same navigation range with diesel engines.

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.

A Study on Durability and Strength Properties of Compact Tension Specimen by Material through Simulation Analysis (시뮬레이션 해석을 통한 소재 별 소형 인장 시험편의 내구성 및 강도 특성에 관한 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.579-588
    • /
    • 2018
  • There are the plastic resin, fiber and the single metal among materials. There is also the inhomogeneous material whose durability is improved as the composite material with the property of light weight. This study notices the composite material with light weight of CFRP. The strength properties of stainless steel and aluminum which have been used generally are compared and analyzed each other with CFRP. The compact tension specimen of the same standard by each material were designed and the simulation tensile analyses were carried out. As the study result, the maximum deformation, maximum stress and maxium strain energy are shown to be about 0.0148mm, 59.104MPa and 0.00529mJ respectively in case of CFRP specimen model. The maximum deformation, maximum stress and maxium strain energy were shown to be about 0.0106mm, 42.22MPa and 0.002699mJ respectively at stainless steel. It could be checked that the maximum deformation, maximum stress and maxium strain energy of aluminum specimen model were shown to be about 0.023mm, 33.29MPa and 0.00464mJ respectively at stainless steel. Therefore, the results at this study are thought to be applied with the basic data on the strength property of CFRP composite material.