• Title/Summary/Keyword: Fiber-Optic Sensor

Search Result 518, Processing Time 0.022 seconds

Detection of Partial Discharge Acoustic Signal Using the Optical Fiber Interferometric Sensor (광섬유 간섭계 센서를 이용한 부분방전 음압 측정)

  • 이종길;박윤석;이준호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.614-623
    • /
    • 2002
  • In this paper, it was manufactured an interferometric optical fiber sensor and measured partial discharge acoustic signal caused by defect of power facilities such as power cables, transformers and gas insulation. Acrylic and aluminium mandrels wound with fiber-optic were chosen as optical fiber sensor, Sagnac and Mach-Zehnder interferometers were chosen to detect discharge acoustic signals. The two fiber optic interferometers were identified by using the PZT. Discharge experimentation set in the discharge imitation cell in oil tank and the discharge phenomena was generated. Based on the experimental result, to detect the discharge acoustic signal, Sagnac interferometer can detect stably the acoustic signal than the Mach-Zehnder interferometer. It is shown that Sagnac optical fiber sensor can detect the discharge acoustic signals effectively.

Implementation of fiber-optic temperature sensor system base on optical absorption device (광흡수 소자를 이용한 광온도 센서 시스템의 구현)

  • 김영수;김요희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.128-134
    • /
    • 1995
  • A fiber-optic temperature sensor utilizing an optical absorption device (InP) was fabricated. The spectrum of transmitted light through an InP device was obtained at the three temperatures(249 K, 369 K). A stabilized LED(light emmiting diode) driver, photoreceiver, and signal proocessing electronics were designed. An intensity referencing technique was adopted in order to minimize the fluctuation of output signal due to external pertubation of the transmitting optical fiber. The optical absorption edge of the InP device moves to longer wavelength at a rate of 0.42 nm / K, and energy gap of InP is 1.35 eV at room temperature. From these results, it is concluded that the InP device has temperature dynamic range of 300 K with LED of center wavelength of 940nm and spectral width of 50nm. The designed fiber-optic temperature sensor system showed good linearity within the temperature range from -30$^{\circ}C$ to + 150$^{\circ}C$.

  • PDF

Temperature Compensation of a Fiber Optic Strain Sensor Based on Brillouin Scattering

  • Cho, Seok-Beom;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.168-173
    • /
    • 2004
  • Brillouin scattering-based fiber optic sensors are useful to measure strain or temperature in a distributed manner. Since the Brillouin frequency of an optical fiber depends on both the strain and temperature, it is very important to know whether the Brillouin frequency shift is caused by the strain change or temperature change. This article presents a temperature compensation technique of a Brillouin scattering-based fiber optic strain sensor. Both the changes of the Brillouin frequency and the Brillouin gain power is observed for the temperature compensation using a BOTDA sensor system. Experimental results showed that the temperature compensated strain values were highly consistent with actual strain values.

Development of optical temperature distribution measurement system for Underground Power Transmission tunnel (지중선로의 분포 온도 측정 시스템 개발)

  • Lee, Keun-Yang;Song, Woo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

A New Technique for Improvement of Dynamic Range in Fiber Optic Acoustic Sensor using Sagnac Interferometers (Sagnac 간섭계를 이용한 광섬유 음향 센서의 동적 범위 향상 기법)

  • Nam, Sung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.416-423
    • /
    • 2000
  • A new demodulation technique which can be used for the fiber optic acoustic sensor system using Sagnac interferometer is described. The theoretical limitation in dynamic range of the quadrature demodulation technique can be removed by the proposed BPSK(Binary Phase Shift Keying) demodulation technique. Full demodulation of input acoustic signal is possible with just simple electronics by eliminating the necessity of the high frequency phase modulation. This technique is suitable for digital signal processing of fiber optic sensor systems and can be applicable for other interferometers.

  • PDF

Detect to Impulse Large Current based on faraday Effect (파라데이효과를 이용한 임펄스 대전류 측정)

  • Park, Hae-Soo;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.505-507
    • /
    • 1995
  • Applications of the fiber optic sensing are glowing rapidly, particularly in situations where size, weight, speed, and immunity to electromagnetic interference are important considerations. The fiber optic current sensors have been developed for low frequency(60Hz) metering in electric power systems. But we try measure to high frequency large current by fiber optic current sensor based on Bi substituted rare earth iron garnet. In this paper, we report the linearity to 500 amperes and frequency response of signal processor and a result of detection the standard impulse large current of fiber optic impulse sensor system.

  • PDF

Mathematical model for assessment of the safety of over three-span steel beams based on average strains from long gage optic sensor (평균변형률을 이용한 3경간 이상 연속 철골보의 안전성 평가 기법)

  • Jung Seong-Moon;Lee Hong-Min;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.159-166
    • /
    • 2006
  • Although the strain distribution along the length of a beam in buildings or infrastructures is non-uniform, most fiber optic sensors are point sensors that can measure the strain only at a local point of a beam. Long gage fiber optic sensors that measure integrated strain over a relatively long length can consider strain variation. This type of sensor was found to be efficient and useful for monitoring large-scale structures. On the other hand, the maximum strain or stress in a beam can not be measured with long gage optic sensors. However, for the assessment of the safety of multi-span steel beams subjected to various vertical loads, the maximum strain or stress measured during monitoring is required for comparison with the allowable stress of the beam calculated by a design code. Therefore, in this paper, mathematical models are presented for determination of the maximum values of strains in more three-span steel beams based on the average strains measured by long gage optic sensors.

  • PDF

A study on stabilization of a fiber-optic current sensor using sagnac interferometer (Sagnac 간섭계형 광섬유 전류센서의 안정화 연구)

  • 정래성;강현서;이종훈;송정태;이경식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.94-99
    • /
    • 1997
  • A new method of stbilizing the sagnac interferometric fiber optic current sensor inteh presence of birefringences and phase is presented. This method is realized by dividing the output of the ac current signal with the modulation signal output. Using the technique the stability of the current sensor was improve dmore than 4.5 times at 800Arms for 2 hours. The current sensor also shows good linearity up to 100Arms.

  • PDF

Investigation of Sound Pressure Detection of Fiber Optic Sensor in Transformer Oil According to TLS and CW Laser Source (TLS와 CW 광원에 따른 트랜스포머 오일 내에서 광섬유 센서의 음압 감지 특성 연구)

  • Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • To substitute TLS in the hybrid system which is combined with Sagnac interferometer and fiber bragg grating (FBG) it is necessary to investigate how the laser source (TLS and CW) and sensor material variate the response of fiber optic sensor. Two different hollow cylinder type mandrel materials are proposed which are PTFE and PTFE+carbon and 18 m optical fiber is wounded at the mandrel surface. CW laser source experiments had been done in the oil tank which is filled with transformer oil in the 1 kHz~20 kHz frequency range. Also Sagnac interferometer fiber optic sensor is combined with FBG called hybrid system and TLS used as a light source. Based on the experimental results PTFE sensor showed more higher magnitude of detection signal rather than carbon sensor and this result is agreement with the McMahon's theoretical results. Phase variation is inversely proportional to the elastic modulus of the mandrel material. In PTFE fiber sensor, tunable laser source showed more higher performance rather than CW case. Therefore, TLS fiber optic sensor can be applied to the hybrid system which is combined with Sagnac and FBG.

Fiber-optic humidity sensor system for the monitoring and detection of coolant leakage in nuclear power plants

  • Kim, Hye Jin;Shin, Hyun Young;Pyeon, Cheol Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1689-1696
    • /
    • 2020
  • In this study, we developed a fiber-optic humidity sensor (FOHS) system for the monitoring and detection of coolant leakage in nuclear power plants. The FOHS system includes an FOHS, a spectrometer, a halogen white-light source, and a Y-coupler. The FOHS is composed of a humidity-sensing material, a metal tube, a multi-mode plastic optical fiber, and a subminiature version A (SMA) fiber-optic connector. The humidity-sensing material is synthesized from a mixture of polyvinylidene fluoride (PVDF) in dimethyl sulfoxide (DMSO) and hydroxyethyl cellulose (HEC) in distilled water. We measured the optical intensity of the light signals reflected from the FOHS placed inside the humidity chamber with relative humidity (RH) variation from 40 to 95%. We found that the optical intensity of the sensing probe increased linearly with the RH. The reversibility and reproducibility of the FOHS were also evaluated.