• Title/Summary/Keyword: Fiber-Optic

Search Result 1,082, Processing Time 0.022 seconds

Sensitivity Analysis of Fiber Optic Hydrophone for Hollow Cylindrical Mandrel (중공 원통형 광섬유 하이드로폰의 감도 해석)

  • 김정석;윤형규;설재수;남성현
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.565-569
    • /
    • 1999
  • Recently, fiber optic hydrophone is a subject which has attracted as a underwater acoustic sensor. In this study, Finite element modeling of fiber optic hydrophone for hollow cylindrical mandrel was performed and the acoustic sensitivity was calculated to estimate the performance of single element fiber optic hydrophone. And acoustic sensitivity was measured in acoustic water tank to verify the result of simulation. The result of FE analysis and experiment is -126 dB re rad/$\mu$ Pa and -128 dB re rad/$\mu$ Pa respectively.

  • PDF

Sturdy on the Optimal Search Algorithm for the Automatic Alignment of Fiber Optic Components (광부품 정렬 자동화를 위한 최적 탐색 알고리즘 연구)

  • 지상우;임경화;강희석;조영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.451-454
    • /
    • 2002
  • The fiber optic communication technology is considered as a key solution for the future communication. However the assembly of the fiber optic components highly depends on manual or semi-automated alignment process. And the light search algorithm is recognized an important factor to reduce the manufacturing process time. Therefore this paper investigates optimal search algorithm for the automatic alignment of fiber optic components. The experiments show the effectiveness of Hill Climbing Search, Adaptive Hill Climbing Search and Steepest Search algorithms, in a view of process time.

  • PDF

Experimental Analysis of Flow Induced Vibration Measurement Using Fiber Optic Sensor (광섬유 센서를 이용한 유체유기진동의 실험적 측정 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.274-286
    • /
    • 2009
  • Fiber optic sensor is widely used in measuring acoustic and vibration. Especially interferometric sensors are more suitable to measure the acoustic signal. In this paper, a Fabry-Perot interferometric fiber optic sensor was used to measure flow induced vibration. This vibration also measured using an accelerometer, and the data was compared to one other. The venture, nozzle, drop barrel, and rapid expansion in the pipeline are the measuring objects. The flow rate is changed from 50 L/min to 150 L/min and the average flow velocity was about 7 m/s. Based on the experimental results the suggested fiber optic sensor detects flow induced vibration effectively. Therefore, this kind of fiber optic sensor can be applied to the monitoring the flow induced noise and vibration such as pipelines, cables, buildings.

Geometric moire fringe fiber optic accelerometer system for monitoring civil infrastructures (토목 구조물 건전성 평가를 위한 무아레 프린지 기법 광섬유 가속도계 시스템 개발)

  • Kim, Dae-Hyun;Feng, Maria Q.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents a novel fiber optic accelerometer system for monitoring vibration of large-size structures. The system is composed of one (or multiple) sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling, and low cost. In this paper, a prototype of the fiber optic accelerometer system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. A unique algorithm has also been developed to derive the sensor's acceleration from the raw signals of the light control unit; it is implemented via a separate signal processing unit. Finally, the shaking table tests successfully demonstrate the performance and the potential of the moire fringe fiber optic sensor system to monitor the health of civil infrastructures.

All-Fiber Optic Gyroscope (전광파이버형 광파이버 자이로)

  • Kim, In-Soo S.;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1840-1842
    • /
    • 1998
  • Gyroscope is a very important core sensor, as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics, plane, vessel and so on for civilian and millitary applications. Mechnical gyroscopes, adopting a principle of spinning a top, have been used in many application system. These mechnical gyroscopes need high power consumption, long warming time and complicated peripheral devices. But fiber-optic gyroscopes, based on the Sagnac effect, have novel advantages as small volume. simple scheme, low power consumption and high reliability. So we have developed a Intermediate grade All-fiber Optic Gyroscope, which has open-loop and minimum reciprocal configuration scheme. We have designed feedback circuits for stability of amplitude and phase using four lock-in amplifier(LIA) circuits and also used for noise limitation. This paper describes the scheme of optical part and electronic part and also test results of this all-fiber optic gyroscope. The performance have been achieved as long-term bias drift of $9.54^{\circ}/h$, random walk of $0.0317^{\circ}/\sqrt{h}$ and dynamic range of ${\pm}150\;deg/s$.

  • PDF

Implementation of Quick fit, High Performance Outdoor Optical Connector for 4G Mobile Communication System (4G 이동통신기반 초간편 접속 고기능 광커넥터의 구현)

  • Lee, Young-Chur;Kim, Chul-Gyun;Cheon, Seung-Chang;Juong, Woo-Youn
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.3
    • /
    • pp.110-114
    • /
    • 2011
  • The recent development of 4G mobile communication system has led to the rapid technology shift from conventional repeater systems using coaxial cable links towards new fiber optic repeater systems using fiber-optic links between the base station and the outdoor fiber optic repeater. The technical changes have brought up the increasing needs of robust optic links that can be used in harsh environments. Based on the most demanding requirements, a new outdoor optical connector employing 2-channel fiber optics, uplink and downlink, has been developed for the applications where the rugged environmental protection is essential. This paper describes the development of the new connector along with the design criteria and performance results. In summarizing, the prototype optical connectors have undergone extensive laboratory and field test, and they have shown exceptional optical and mechanical characteristics under extreme environmental conditions. The connectors have also exhibited capabilities of providing fast and easy installation while maintaining high performance fiber optic connections.

  • PDF

Interferometric Optical Fiber Sensors for Health Monitoring Systems of Structures (구조물 유지관리용 간섭형 광섬유 센서)

  • 김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.355-359
    • /
    • 1995
  • In this paper, the possibility of interferometric shows very good linearity to the strain. Fiber optic sensors have various merits for health monitoring systems. They are very small in diamerter. So, they don't give any disturbance in strength to the structures, Optical fiber sensors are innert to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the maintainance systems of the structures, which are exposed to the electric fields, such as bridges, dams and buildings.

  • PDF

The Bias Drift Due to Fiber Coil Temperature Variation and the Temperature Compensation in Fiber Optic Gyroscope (광섬유자이로의 고리 온도변화에 의한 바이어스 특성 및 온도 보상)

  • Jo, Min-Sik;Chong, Kyoung-Ho;Do, Jae-Chul;Choi, Woo-Seok;Song, Ki-Won;Kang, Su-Bong;Shin, Won-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.222-227
    • /
    • 2009
  • The bias characteristics due to the changes of temperature and temperature gradient of fiber coil are investigated in fiber-optic gyroscope. The bias performance is degraded with the changes of temperature and temperature gradient of fiber coil. The temperature compensation using both the temperature-dependent bias measurement and the temperature-induced error model of fiber-optic gyroscope improves the bias stability about 3 times as much as the uncompensated original case, which leads to very stable bias performance over the temperature range from $-35^{\circ}C$ to $+77^{\circ}C$.

A Study on the Security of Infrastructure using fiber Optic Scattering Sensors (광섬유 산란형 센서를 이용한 사회기반시설물의 보안에 관한 연구)

  • Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.499-507
    • /
    • 2004
  • We have studied tile detection techniques, which can determine the location and the weight of an intruder into infrastructure, by using fiber-optic ROTDR (Rayleigh optical time domain reflectometry) sensor and fiber-optic BOTDA (Brillouin Optical time domain analysis) sensor, which can use an optical fiber longer than that of ROTDR sensor Fiber-optic sensing plates of ROTDR sensor, which arc buried in sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The constructed ROTDR could be used up to 10km at the pulse width of 30ns. The location error was less than 2 m and the weight could be detected as 4 grades, such as 20kgf, 40kgf, 60kgf and 80kgf. Also, fiber optic BOTDA sensor was developed to be able to detect intrusion effect through an optical fiber of tells of kilometers longer than ROTDR sensor. fiber-optic BOTDA sensor was constructed with 1 laser diode and 2 electro-optic modulators. The intrusion detection experiment was peformed by the strain inducing set-up installed on an optical table to simulate all intrusion effect. In the result of this experiment, the intrusion effort was well detected as the distance resolution of 3m through the fiber length of about 4.81km during 1.5 seconds.

Experimental Investigation of the Acoustic Signal Detection Performance for an Interfermetric Fiber Optic Hydrophone (실험을 통한 간섭계형 광섬유 청음기의 음향신호 감지성능 연구)

  • 이종길;윤형규;설재수;남성현
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.931-936
    • /
    • 1997
  • Optical fiber sensor is a subject which has been attracted considerable attention in recent years. Detection of sound pressure with optical fibers positioned in the arms of a Mach-Zehnder interferometer is presented in this paper. A fiber length of the order of 150m is wounded is made by hollow cylinder type. To increase the sound signal 3${\times}3$ directional coupler is used. Fiber optic hydrophone is the underwater tank with 2kHz sound source. Finally, it is shown that the fiber optic hydeophone can stably detec 2kHz sound.

  • PDF