• Title/Summary/Keyword: Fiber volume

Search Result 1,114, Processing Time 0.034 seconds

An Experimental Study on Fundamental Quality Properties of Basalt Fiber Reinforced Mortar according to Application of High Volume Fly Ash (바잘트 섬유보강 모르타르의 하이볼륨 플라이애시 적용에 따른 기초 품질 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung Keol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • This study was evaluated that fundamental quality properties in the mortar level, as part of a basic study for development of fiber reinforced concrete using basalt fiber. Mortar mixtures used in the experiments used the mortar using cement only and high volume fly ash mortar using fly ash of 50%, was evaluated by comparison. As a experiments results, high volume fly ash mortar using 50% fly ash was effective for improving fiber dispersibility than mortar using cement only, accordingly, it showed that fiber aggregation phenomenon has been greatly reduced. In addition, if the fly ash used much more than 50%, the compressive strength has been shown to decrease of about 30%, fiber length and mixing ratio of basalt fiber was found to have a greater effect on flow properties than mechanical properties.

An Experimental study on Reduction Effect to Explosive spalling of high performance concrete by Fiber Type and Volume Fraction of Fiber (섬유종류 및 혼입량에 따른 고성능콘크트의 폭열저감에 관한 실험적 연구)

  • Na, Chul-Sung;Shin, Kwan-Soo;Kim, Young-Sun;Kwon, Young-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.81-85
    • /
    • 2005
  • Recently, fire resistance of high performance concrete for explosive spalling was issued as high performance concrete was vulnerable to the explosive spalling in initial fire. Therefore, in this study, an experiment about reduction effect to explosive spalling of high performance concrete is performed by adding several polymer fiber with various volume fraction, an then final fiber and volume fraction of that which reduce the explosive spalling of high performance concrete is presented. As the result of this study, the most fitted fiber volume fraction of reducing effect for explosive spalling at high performance concrete is under the 0.1%, as consider the flowability and efficiency.

  • PDF

Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

  • Lu, Xincheng;Jiang, Jianchun;Sun, Kang;Xie, Xinping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.103-110
    • /
    • 2014
  • Sisal fiber, an agricultural resource abundantly available in china, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, $N_2$-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that $ZnCl_2$ changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was $1628m^2/g$, total pore volume was $1.316m^3/g$ and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride.

Fabrication and Mechanical Properties of TiNi/Al2024 Composites by Hot-Press Method (고온 프레스법에 의한 TiNi/Al2024 복합재료의 제조 및 기계적 특성평가)

  • Son, Yong-Kyu;Bae, Dong-Su;Park, Young-Chul;Lee, Gyu-Chang
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy fiber and Al2024 sheets were used as reinforcing material and matrix, respectively. In this study, TiNi/Al2024 shape memory alloy composite was made by using hot press method. In order to investigate bonding condition between TiNi reinforcement and Al matrix, the micro-structure of interface was observed by using optical microscope and diffusion layer of interface was measured by using Electron Probe Micro Analyser. And the mechanical properties of composite with three parameters(volume fraction of fiber, cold rolling amount and test temperature) were obtained by tensile test. The most optimum bonding condition for fabrication the TiNi/Al2024 composite material was obtained as holding for 30min. under the pressure of 60MPa at 793K. The strength of composite material increased considerably with the volume fraction of fiber up to 7.0%. And the tensile strength of this composite increased with the reduction ratio and it also depends on the volume fraction of fiber.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

A Study on the Effect of Steel Fiber in Reinforced Concrete Coupling Beam Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 연결보에서 강섬유의 보강효과에 관한 연구)

  • Kim, Jin-Sung;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.181-190
    • /
    • 2019
  • In this study, four reinforced concrete coupling beams were subjected to cyclic lateral loading test to evaluate the structural performance of coupling beam according to volume fraction of steel fiber. For this purpose, the volume fraction of steel fiber(0%, 1%, 2%) and transverse reinforcement spacing were determined as the main parameter. According to the test results, the maximum strength of D-40C-s100-0 was 1.15, 1.13, 1.05 times higher than D-40C-s300-0, D-40C-s300-1, D-40C-s300-2, respectively. The maximum strength of coupling beams with mitigated rebar details increases as the volume fraction of steel fiber increases. Although steel fiber 2% reinforced specimen(D-40C-s300-2) did not satisfy the amount of transverse reinforcement required for seismic design of coupling beam, the overall performance including to maximum strength, ductility and energy dissipation capacity was similar to the control specimen(D-40C-s100-0). As a result, the use of steel fiber with 2% reinforcement can partially replace the transverse reinforcement in diagonally reinforced concrete coupling beam.

Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete (강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성)

  • Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2010
  • Sixteen concrete mixes reinforced with hybrid steel-polybinyl alcohol (PVA) fibers and a control concrete mix with no fiber were tested in order to examine the effect of the micro and macro fibers on the slump and different mechanical properties of concrete. Main variables investigated were length and volume fraction of steel and PVA fibers. The measured mechanical properties of hybrid fiber reinforced concrete were analyzed using the fiber reinforcing index and compared with those recorded from monolithic steel or PVA fiber reinforced concrete. The initial slump of hybrid fiber reinforced concrete decreased with the increase of the aspect ratio and the volume fraction of fibers. In addition, splitting tensile strength, modui of rupture and elasticity, and flexural toughness index of concrete increased with the increase of the fiber reinforcement index. Modulus of rupture and flexural toughness index of hybrid fiber reinforced concrete were higher than those of monolithic fiber reinforced concrete, though the total volume fraction of hybrid fibers was lower than that of monolithic fiber. For enhancing the flexural toughness index of hybrid fiber reinforced concrete, using the steel fiber of 60 mm length was more effective than using the steel fibers combined with 60 mm and 30 mm lengths.

Evaluation of flexural performance of high performance fiber reinforced cementitious composites according to fiber shape, aspect ratio and volume fraction (강섬유의 형상, 길이 및 혼입율에 따른 고성능 섬유보강 시멘트 복합체의 휨 특성 평가)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.697-704
    • /
    • 2017
  • High-Performance Fiber-Reinforced Cement Composites (HPFRCC) has outstanding durability, and has attracted interest because of its ductility and development of strength, which allows a reduction of the self-weight of a structural member by substantially decreasing the cross section. Therefore, the present study aimed to improve the economic efficiency of HPFRCC by examining experimentally the flexural performance considering various characteristics of the steel fiber. To find an efficient fiber reinforcement method, the flexural performance was evaluated for different shapes, aspect ratios, and volume ratios of the steel fiber. Straight, hooked, and twisted fiber configurations were considered by adopting a fiber length longer than the usual 13 mm. The test results showed that HPFRCC reinforced by 19.5 nun-long straight fibers with a volume fraction of 1.5% shows better flexural performance than that reinforced by 13 mm-long straight fibers with a volume fraction of 2.0%. Consequently, HPFRCC with enhanced economic efficiency can be produced by adopting a reduced amount of steel fiber.

A Study on the Prediction of Elastic Modulus in Short Fiber Composite Materials (단섬유 복합재료의 탄성계수 예측에 관한 연구)

  • Kim Hong Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.318-324
    • /
    • 2005
  • Theoretical efforts are performed to extend the formulation of NSLT(New Shear Lag Theory) for the prediction of the elastic modulus in short fiber composite. The formulation is based on the elastic stress transfer considering the stress concentration effects influenced by elastic modulus ratio between fiber and matrix. The composite modulus, thus far, is calculated by changing the fiber aspect ratio and volume fraction. It is found that the comparison with FEA(Finite Element Analysis) results gives a good agreement with the present theory (NSLT). It is also found that the NSLT is more accurate than the SLT(Shear Lag Theory) in short fiber regime when compared by FEA results. However, The modulus predicted by NSLT becomes similar values that of SLT when the fiber aspect ratio increases. Finally, It is shown that the present model has the capability to predict the composite modulus correctly in elastic regime.

A Study on the Influence of its Constituents on the Creep Behavior of High Temperature Composite Materials (고온용 복합재료의 크립 거동에 있어서 구성요소의 영향에 대한 연구)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.45-53
    • /
    • 1998
  • A method to predict the creep behavior of fiber-reinforced ceramic composites at high temperatures was suggested based on finite element modeling using constituent creep equations of fiber and matrix and showed good agreement with the experimental results. The effects of matrix creep behavior, fiber volume fraction, and residual stresses on the composite creep behavior were also investigated. The results showed that the primary behavior of composites was greatly affected by that of matrix but post-primary behavior was governed by fiber creep characteristics. The increase of fiber volume fraction from 15 vol% to 30 vol% caused the 50% and 40% decrease of steady-state creep rates and total creep strains at $1200^{\circ}C$, 180MPa, respectively. Feasible compressive residual stresses in the matrix caused by different thermal expansion coefficients between the fiber and the matrix could significantly reduce total creep strains of the composite. The creep deformation mechanism in the fiber-reinforced ceramic composites could be explained by the stress transfer and redistribution in the fiber and matrix due to different creep characteristics of its constituents.

  • PDF