• Title/Summary/Keyword: Fiber texture

Search Result 274, Processing Time 0.033 seconds

The Effect of Intermediate Annealing on the Evolution of Texture in I.F. Steel (LF 강의 집합조직 발달에 미치는 중간열처리의 영향)

  • 김현철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.112-115
    • /
    • 1999
  • The effect of intermediate annealing on the texture evolution in I.f steel was investigated by using X-ray texture measurement. After The sample was cold rolled to 80% reduction intermediate annealing was introduced to preform ${\gamma}$-fiber orientation grains in deformed matrix. The annealing time was varied between 30 and 3600 sec, These samples were cold rolled to 90% reduction and full annealed. By intermediate annealing final full annealed samples had very homogeneous ${\gamma}$-fiber orientation resulting in good deep drawability.

  • PDF

Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet (무윤활 압연한 알루미늄 합금의 집합조직과 성형성)

  • Akramov, Saidmurod;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

Texture Development of Cold Rolled and T-6 Treated 7X1X Al-alloy with 0.1% Sc (0.1% Sc이 첨가된 7X1X Al-합금의 압연과 T-6열처리에 따른 집합조직의 발달)

  • Jea, C.W.;Jin, S.J.;Chung, D.S.;Lim, S.T.;Park, N.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.101-105
    • /
    • 2004
  • After extrusion, cold rolling and T-6 treatment, texture development of 7x1x Al-alloy with 0.1% Sc is studied. During extrusion the very strong <111>+weak <100> fiber texture is developed, which is Influenced on the formation of rolling texture. The texture after 80% cold rolling can be described by strong{112}<111>(Cu)+{123}<634>(S) component in the cross section of the extruded rod, the strong -fiber+weak{110}<001>(Goss) components in the longitudinal section, and the strong {110}<112>(Bs)+weak{001}<100>(Cube) components in the transverse section. The components of rolling texture are remained after T-6 treatment, but the maximum density of ODF is higher. The calculated mean r-values and the planar anisotropy are relatively high, which are dependent on the texture. After T-6 treatment, recrystallized equiaxed grains with average grain size of $1{\sim}2{\mu}m$ are obtained.

A Study on Texture Development in Liquid-Phase Sintered Silicon Carbide (액상소결한 탄화규소의 집합조직 발달에 관한 연구)

  • 성한규;조경식;박노진;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.320-326
    • /
    • 2000
  • Development of texture in SiC materials by hot-pressing and subsequent annealing was studied. Crystallographic texture type was characterized by measuring X-ray pole figures on the perpendicular plane to the hot-pressing direction. Observed all pole figures were nearly axially symmetric (fiber texture). In case of ${\beta}$-SiC materials, the pole density of basal plane (0004) increased as annealing time increased, in contrast, other planes (hkil) of ${\beta}$-SiC materials and all planes of ${\alpha}$-SiC materials nearly remained unchanged. In the case of ${\beta}$-SiC materials, therefore, a weak texture of (0001) plane at the normal direction took place in the 8h annealed samples, resulting from grian growth. The fracture toughness values of ${\alpha}$-SiC materials measured in both planes parallel and perpendicular to the hot-pressing direction were very similar. However, the fracture toughness of ${\beta}$-SiC materials measured parallel to the hot-pressing direction were higher than that measured perpendicular to the hot-pressing derection, relatively, because of the texture and the microstructure anisotropy.

  • PDF

Grain Growth and Texture Evolution of Mg: Phase Field Modeling (마그네슘의 결정립 성장과 집합조직: 상장모델 계산)

  • Kim, Dong-Uk;Cha, Pil-Ryung
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.168-171
    • /
    • 2011
  • We investigate grain growth behavior of poly-crystalline Mg sheet having strong basal fiber texture using phase field model for grain growth and micro-elasticity. Strong initial basal texture was maintained when external load was not imposed, but was weaken when external biaxial strain was imposed. Elastic interaction between elastic anisotropy of Mg grain and external load is the reason why texture evolution occurs.

Microstructural analyses of soyprotein fibers (대두 단백섬유의 미세구조 연구)

  • Kim, J.C.;Cho, S.J.;Byun, P.H.;Yoon, S.K.;Rhee, K.C.;Byun, S.M.
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.353-359
    • /
    • 1991
  • As a tool for the texture analyses of the soyprotein fibers, the scanning electron microscopical microstructure were studied. With the results of TPA(Texture Profile Analysis), microstructural analyses of the soyprotein fibers showed that the disulfide and hydrogen bonds are one of the most important factors determining the shape and maintenance of fiber struture. The microstructures of the hydrated soyprotein dispersion and dope, as starting materials of the soyprotein fiber were presented.

  • PDF

Influence of Texture on the Tensile Properties in AZ31 Magnesium Alloy (AZ31 마그네슘합금의 집합조직에 따른 인장특성)

  • Park, No-Jin;Hwang, Joong-Ho;Roh, Jae-Seung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Magnesium alloys are drawing a lot of attention and have been extensively studied. The major obstacle to the practical application of the alloys is the poor formability at room temperature, originating basically from the insufficient number of slip system. Development of a proper texture is one promising solution to improve the formability. In the present work, after extrusion and full annealing, microstructures, texture developments and tensile properties of AZ31 Mg alloys are studied. After full annealing strong <1010>||ED fiber texture and weak <1120>+<1230>||ED fiber texture (c-axes in the radial direction) were developed. The textures are distinctly influencing the tensile properties, which can be understood in terms of the activation of basal slip modes. With the random orientation, which is developed in the $45^{\circ}$ sample to the extrusion direction, the better workability can be achieved at room temperature.

Effect of I/d Parameter on Recrystallization Textures of AA5182 Alloy Sheets (5182 알루미늄 합금판재의 재결정 집합조짓에 대한 I/d 파라메타의 영향)

  • Kim, Kee-Joo;Won, Si-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1086-1093
    • /
    • 2011
  • To fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets due to the change of lid parameter after rolling and subsequent annealing was studied. The measurement of the deformation textures was carried out for the sheets with high reduction ratio and the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets in various I/d parameters. Rolling without lubrication and subsequent annealing led to the formation of favorable rot-$C_{ND}$ {001}<110> and ${\gamma}$-fiber ND//<111> textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at high lid parameter of 6.77. The initial shear deformation texture, especially, ${\gamma}$-fiber ND//<111> was not rotated during heat treatment in holding time of 180~7,200 seconds on AA5182 with I/d parameter of 6.77. Therefore, the AA5182 sheets were fabricated by controlling I/d parameter having well evolved ${\gamma}$-fiber ND//<111> which was advantageous in good drawability of the sheets.