• Title/Summary/Keyword: Fiber spool

Search Result 4, Processing Time 0.015 seconds

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

Prediction of the Unwinding Performance of Optical Fiber Cables by Nonlinear Dynamics Analysis (비선형 동적 거동 해석을 통한 광섬유 케이블의 풀림 성능 예측 연구)

  • Lee, Jae-Wook;Kim, Kun-Woo;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.347-352
    • /
    • 2010
  • Under harsh environments in which remote control is impossible, wire-guided control technology is effective for controlling distant underwater vehicles that serve mother ships in missions, such as exploration and installation. When the fiber is unwound from the spool, tension fluctuations occur in the fiber because of the relative velocity of the moving vehicles and unwinding velocity of the fiber. As a result, fiber cables exhibit complicated behaviors, become entangled, and may get cut. In this study, a spool-like design for winding tens of kilometers of fiber cables is proposed by analyzing cable winding. The unwinding performance of the designed spool is estimated by performing nonlinear dynamics analysis of the nonlinear behavior and tension fluctuations observed during the unwinding of the fiber.

Implementation of a Low-cost Fiber Optic Gyroscope for a Line-of-Sight Stabilization System (Line-of-Sight 안정화 시스템을 위한 저가형 광자이로스코프 구현)

  • Yoon, Yeong Gyoo;Lee, Sang-Min;Kim, Jae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.168-172
    • /
    • 2015
  • In general, open-loop fiber-optic gyroscopes (FOG) are less stable than closed-loop FOGs but they offer simpler implementation. The typical operation time of line-of-sight (LOS) stabilization systems is a few seconds to one hour. In this paper, a open-loop fiber optic gyroscope (FOG) for LOS applications is designed and implemented. The design goal is aimed at implementing a low cost, compact FOG with low Angle Random Walk (ARW) (< $0.03deg/\sqrt{h}$) and bias instability (< 0.25deg/h). The FOG uses an open-loop all-fiber configuration with 100M PM fiber wound on a small diameter spool. In order to get the design goal, digital signal processing techniques for signal detection, modulation control and compensation are designed and implemented in FPGA.

Cancellation of Phase Noise in 1.4 GHz RF Signal Transferred to a Remote Site through 13 km Fiber (13 km 광섬유를 통하여 원격지로 전송된 1.4 GHz RF 신호의 위상잡음 제거)

  • Lee, Won-Kyu;Park, Chang-Yong;Mun, Jong-Chul;Yu, Dai-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.103-110
    • /
    • 2010
  • A fiber-phase-noise compensating system was constructed for a 1.4 GHz reference frequency transferred through a 13-km-long fiber spool. The transfer instability was dependent on the temperature variation of the compensating system. With the room temperature variation stabilized within $0.3^{\circ}C$, the transfer instability was $4.6{\times}10^{-14}$ at 0.8 s of average time and $2.5{\times}10^{-16}$ at 1000 s of average time with the fiber phase noise compensated. However, with the room temperature changed by $3.5^{\circ}C$, the transfer instability was $6.8{\times}10^{-14}$ at 1.2 s of average time and $3.0{\times}10^{-15}$ at 1000 s of average time. From this result, the temperature stability condition for the experimental setup could be determined to obtain a transfer instability of $10^{-16}$ at 1000 s of average time.