• 제목/요약/키워드: Fiber properties

검색결과 4,913건 처리시간 0.034초

재활용 플라스틱 섬유보강 콘크리트의 역학적 특성 (The Mechanical Properties of Recycled Plastic Fiber-Reinforced Concrete)

  • 양인환
    • 한국건설순환자원학회논문집
    • /
    • 제2권3호
    • /
    • pp.225-232
    • /
    • 2014
  • 이 연구에서는 재활용 플라스틱 섬유 (recycled plastic fibers)로 보강된 콘크리트의 역학적 특성을 파악하고자 하였다. 부피비 0, 0.5, 1.0, 1.5 및 2.0%의 섬유비를 갖는 재활용 섬유보강 콘크리트의 역학특성 실험결과를 분석하였다. 섬유보강 콘크리트의 압축강도, 탄성계수, 인장강도와 길이변화 특성 실험을 수행하였다. 실험결과는 섬유비가 증가함에 섬유보강 콘크리트의 압축강도와 탄성계수는 증가하는 것을 나타낸다. 또한, 재활용 섬유보강 콘크리트는 일반콘크리트에 비해 쪼갬인장강도, 휨인장강도, 균열개구변위 및 길이변화에 우수한 특성을 나타낸다. 연구결과는 추후 재활용 플라스틱 섬유보강 콘크리트의 재료 모델을 위한 실제적인 기초실험자료로 활용될 수 있을 것으로 사료된다.

마와 인조섬유 교직물의 물성 및 평가 (The Evaluation of Physical Properties and Hand of Bast/Man-Made Fiber Mixed Fabrics)

  • 김순심;양진숙;최종명
    • 한국의류학회지
    • /
    • 제24권6호
    • /
    • pp.828-837
    • /
    • 2000
  • The purpose of this study was to evaluate the physical properties and the hand of bast/man made fiber mixed fabrics compared to linen. The mixed fabrics were made by rayon, polyester and modal fiber as warp yarn, and ramie, flax, rayon/flax and cotton/flax as weft yarn. The crease resistance, drape, tensile strength/extension, water absorbancy and warmth retention were measured for test fabrics. The mechanical properties were measured by Kawabata system, and the hand value was calculated by previously developed equation. The results obtained from this study were as follows: The crease resistance and drape properties of bast/man made fiber mixed fabrics were improved compared to those of linen. The tensile strength of polyester/bast fiber mixed fabrics increased compared to those of linen, but rayon/bast and modal/bast fiber mired fabrics decreased. The extension of all mixed fabrics was increased compared to that of linen. The rayon/ramie and modal/ramie mixed fabrics showed lower warmth retention than linen. The mixed fabrics used rayon and modal as warp yarn showed higher water absorbancy than linen. The Koshi and Hari hand value of all mixed fabrics showed lower than those of linen. Fukurami hand value showed little difference between mixed fabrics and linen. Shari, Kishimi, and Shinayakasa hand value of rayon/bast and modal/bast fiber mixed fabrics showed higher than those of linen.

  • PDF

고로슬래그 골재를 사용한 다공성 콘크리트의 물리·역학적 특성에 미치는 고로슬래그 미분말, 황토 및 보강섬유의 효과 (Effect of Blast Furnace Slag, Hwang-toh and Reinforcing Fibers on The Physical and Mechanical Properties of Porous Concrete Using Blast Furnace Slag Coarse Aggregate)

  • 이진형;박찬기
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.53-60
    • /
    • 2010
  • The effects of blast furnace slag, hwang-toh, and reinforcing fiber on the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio was varied to 0 %, 25 % and 50 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH, unit mass, and void ratio tests have been performed to study the physical properties of the porous concrete using blast furnace slag coarse aggregates with the polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh, while a series of compressive tests have been performed to evaluate the strength property depending on polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh. The test results indicated that the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates is affected by the replacement ratio of blast furnace slag, and the fiber contents. According to the tests with polyvinyl alcohol fiber contents, the void ratio was decreased and the compressive strength was upgraded.

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

CDP 섬유의 염색성(III) -극세 CDP섬유의 염색성, Solvent wicking성 및 물성- (Dyeing Properties of CDP Fiber(III) - Dyeing and Solvent Wicking and Physical Properties of Micro CDP Fiber -)

  • 김영희;정동석;이문철
    • 한국염색가공학회지
    • /
    • 제17권5호
    • /
    • pp.1-12
    • /
    • 2005
  • Polyester fibers can be modified into cationic dyeable polyester fibers(CDP) by the copolymerization of terephthalic acid and 5-sodium sulphoisophthalic acid with ethylene glycol. The advantage of CDP on most cationic dyes is the conspicuous brilliance due to a narrow steep absorption band and the wash fastness and etc. Weight reduction by alkali hydrolysis, dyeing and solvent wicking properties of fabrics with cationic dyes, and change of fine structure were investigated. To obtain optimum splitting process parameters for dyeing and physical properties of micro CDP fiber, splitting method under various conditions was carried out. By means of SEM, it was confirmed that the splitting process of the micro CDP fiber be achieved at the weight reduction. A comparatively greater quantity of dye is necessary to dye microfiber than conventional fiber. The fastness and solvent wicking of regular CDP fiber is higher than that of micro CDP fiber.

장스팬 슬라브 콘크리트의 열화저감에 대한 연구 (A Study on Reducing Deterioration in Long-span Slab Concrete)

  • 김대건;차훈;최상환;문경식
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.11-12
    • /
    • 2014
  • In this study, fundamental properties of concrete mixed with fiber has been analysed. Compressive strength, tensile strength and plastic shrinkage has been tested to conduct the optimum addition ratio of fiber. Effect to control press concrete's cracking has been tested. The following results could be made as the conclusion. For the flowability, slump decreased about 41-79% when all types of fiber used in the concrete. When the addition ratio of fiber is 1.2%, the slump of concrete decreased about 45%. For the strength properties. all the specimens with different addition ratio of fiber shown higher compressive strength comparing with Plain. Comparing with Plain, cracking decreased when the fiber added. Especially, when NY fiber used in the concrete, the plastic shrinkage did not occurred. In addition, Latex modified concrete(LMC) has improved superior physical and chemical properties. The properties of latex, combined with the low water-cement ratio, produce a concrete that has improved flexural, tensile, and bond strength, lower modulus of elasticity, increased freeze-thaw resistance, and reduced permeability compared to conventional concrete of similar mix design.

  • PDF

대체보조섬유를 이용한 Watermark 삽입 한지의 제조 (Characterization of Watermarked Hanji prepared with Non-Mulberry Mixed Fibers)

  • 조정혜;김강재;박성배;김철환;엄태진
    • 펄프종이기술
    • /
    • 제41권3호
    • /
    • pp.35-41
    • /
    • 2009
  • The new way of utilization of Hanji need to develop for adding high value added. An watermarked Hanji was prepared with non-mulberry mixed fibers and the properties were investigated. The mechanical properties of non-mulberry fiber mixed Hanji were very similar to mulberry fiber Hanji. The non-mulberry fiber mixed Hanji was a little brighter than original Hanji. The air permeability and pore size of the hot pepper fiber mixed Hanji were decreased depending on the content of hot pepper fiber. The printing ability of watermarked Hanji made of non-mulberry mixed fibers was higher than that of original paper mulberry Hanji. The preservation properties of non-mulberry fiber mixed watermarked Hanji were almost same as those of the original Hanji.

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok;Kim, Birm-June;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.472-485
    • /
    • 2019
  • When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.

적층제조 연속섬유강화 고분자 복합재료의 물성 예측 (Prediction of the Mechanical Properties of Additively Manufactured Continuous Fiber-Reinforced Composites )

  • ;;김형태;김지훈
    • 소성∙가공
    • /
    • 제32권1호
    • /
    • pp.28-34
    • /
    • 2023
  • In this research, a representative volume element (RVE)-based FE Model is presented to estimate the mechanical properties of additively manufactured continuous fiber-reinforced composites with different fiber orientations. To construct the model, an ABAQUS Python script has been implemented to produce matrix and fiber in the desired orientations at the RVE. A script has also been developed to apply the periodic boundary conditions to the RVE. Experimental tests were conducted to validate the numerical models. Tensile specimens with the fiber directions aligned in the 0, 45, and 90 degrees to the loading direction were manufactured using a continuous fiber 3D printer and tensile tests were performed in the three directions. Tensile tests were also simulated using the RVE models. The predicted Young's moduli compared well with the measurements: the Young's modulus prediction accuracy values were 83.73, 97.70, and 92.92 percent for the specimens in the 0, 45, and 90 degrees, respectively. The proposed method with periodic boundary conditions precisely evaluated the elastic properties of additively manufactured continuous fiber-reinforced composites with complex microstructures.

탄소섬유 보강시멘트 복합체(CFRC)의 공학적 특성에 관한 실험적 연구(I) (A Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites(I))

  • 박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.31-34
    • /
    • 1989
  • In order to discuss the engineering properties of carbon fiber reinforced cement composites with silica fume and silica powder, experimental studies in the CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, lengths, contents of carbon fiber and matrices, their properties of fresh and fardened CFRC were tested. According to the test results, the process technology of light-weight CFRC is developed and their potimum mix proportions are successfully proposed. Also, it can be concluded that the reinforcement of carbon fiber is considerably effective in improving tensile strenghth, flexural strength, toughness and loss of shrinkage of CFRC compared with conventional mortar.

  • PDF