• Title/Summary/Keyword: Fiber optical sensor

Search Result 727, Processing Time 0.026 seconds

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Fiber-optic Goniometer to Measure Knee Joint Angle for the Diagnosis of Gait Disturbance (보행장애 진단을 위한 무릎관절 각도 측정용 광섬유 각도센서)

  • Kim, S.G.;Shin, S.H.;Jeon, D.;Hong, S.H.;Sim, H.I.;Jang, K.W.;Yoo, W.J.;Lee, B.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1009-1013
    • /
    • 2013
  • In this study, we developed a fiber-optic goniometer for the continuous measurement of knee joint angle which provides important medical information on Alzheimer's disease. The fiber-optic goniometer is composed of a light-emitting diode (LED), a plastic optical fiber (POF), and a voltage output photodiode (PD). As a sensing part of the fiber-optic goniometer, a unclad fiber with regular intervals of 1 mm was fabricated to improve efficiency of bending loss according to the angle variation of knee joint. The emitting light with a center wavelength of 470 nm from a LED is guided by a POF to the PD, the transmitted light is then attenuated by the bending loss inside the bent POF. The intensity variation of the light transmitted from the POF gives rise to a change in output voltage in the fiber-optic goniometer. Therefore, we measured the real-time output voltage of the proposed fiber-optic goniometer using the unclad fiber according to the knee joint angle. Through the repeated experiments, the fiber-optic goniometer shows that it has a reversibility and a wide measurable angle range.

Low-cost Fiber Bragg Grating Interrogator Design for Unmanned Aircraft (무인 항공기를 위한 저가형 FBG 인터로게이터 설계)

  • Hong, Jae-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Complex materials are widely used in aviation industries where lightweighting is essential because they have lighter properties than metals. However, composite materials can cause defects such as internal void formation, poor adhesive mixing, and non-adhesive parts during the production process, and there is a risk of micro-cracking and interlayer separation due to low energy impact. Therefore, a structural damage test is essential. As a result, structural integrity monitoring using FBG is drawing attention. Compared to conventional electrical sensors, FBG has the advantage of being more corrosion-resistant and multiplexed without being affected by electrical noise. However, interloggers measuring FBG are expensive and have a large disadvantage because they are made on the premise of measuring large structures. In this paper, low-cost interloggers were designed for use in unmanned or small aircraft using optical switche, WDM filter, and LTFs, and compared to conventional high-priced interrogator.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

Neuro-Adaptive Vibration Control of a Composite Beam with Optical Fiber Sensor (신경망 제어기를 이용한 광섬유가 부착된 복합재 보의 진동제어)

  • Kim, Do-Hyung;Yang, Seung-Man;Han, Jae-Hung;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.135-138
    • /
    • 2002
  • Experimental studies on vibration control of a composite beam with a piezoelectric actuator and an extrinsic Fabry-Perot interferometer (EFPI) have been performed using a neural network controller and an LQG controller. Vibration control performance was investigated in the nonlinear sensing range according to the vibration amplitudes. Using a neuro-controller, adaptive vibration control experiment has been performed for the structure with frequency variations, and its performance is compared with that of an LQG controller. The vibration control results show that the neuro-controller has good performance and robustness with respect to the system parameter variations.

  • PDF

The Study on the Temperature Distribution for 154kV Power Transformers (154kV 전력용 변압기의 온도분포에 관한 연구)

  • Woo, Jung-Wook;Koo, Kyo-Sun;Kwak, Joo-Sik;Kim, Kyung-Tak;Kweon, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.56-61
    • /
    • 2011
  • The temperature of power transformers is very important factor for power system operation in substation because load capacity and limited lifetime of power transformers are determined by winding temperature. Also, The temperature of power transformers varies with the structure, capacity, operation condition and manufacturers. Thus, it is necessary for temperature distribution to be exactly investigated because of efficient load management and prediction of limited lifetime. Nevertheless, there was no case of analysis as well as measurement of the temperature of power transformers. In this paper, we manufactured the 154kV standard power transformer for the test. And we measured the temperature by the heat run test and analyzed the temperature distribution of transformer.

A Development of Diaphragm Sensor for Detecting Partial Discharge (부분방전 측정을 위한 Diaphragm 센서 개발)

  • Kang, W.J.;Park, Y.I.;Chang, Y.M.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1528-1530
    • /
    • 1998
  • In this work, a possible new PD detection technique, based on the Michelson Interferometer, has been proposed. Laser beam transmitted by optical fiber is spliced into two-laser beam by 50/50 coupler, one is reflected on diaphragm, which is vibrated by ultrasonic sound, and then modulated. The other one is reference beam. They are collected into 50/50 coupler making interferenced beam which could be detected by photo detector.

  • PDF

Development of an Exclusive Sensor for Detecting Positions of Field Robot Arms

  • Kim, Jong-Hwa;Yang, Yong-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.4-51
    • /
    • 2001
  • In order to comprise a basic closed-loop control system for a field robot it is necessary to detect the piston rod stroke of a hydraulic cylinder. There are mary conventional type sensors which can detect the displacement of cylinders. However, they cannot reveal the original performance normally or the cannot be applied at all where the operating circumstance of cylinders is beyond specifications of sensors. In this paper, an exclusive method for detecting the piston rod stroke is suggested, which adopts a remote detecting technique using optical fiber sensors. Several experiments using the prototype are executed for verifying the effectiveness of the suggested method and the possibility of the accurate detection of stroke.

  • PDF

Signal processing of interferometric fiber-optic sensor utilizing a digital homodyne detection (디지털 호모다인 검출방식을 이용한 간섭형 광섬유센서의 신호처리)

  • 예윤해
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.62-69
    • /
    • 1995
  • 레이저 다이오드 구동 전류펄스기간의 발진주파수 변조와 간섭계 출력신호의 시간지연 샘플링을 이용하여 3x3 coupler등과 같은 특수 광부품을 사용하지 않고도 1개씩의 광원과 광검출기를 이용하여 측정신호의 변화방향과 함께 half fringe의 수를 count할 수 있으며 광연결선 주변환경의 변화에 의한 세기변화 에러도 피할 수 있는 간섭형 센서를 위한 새로운 신호처리방식을 제안하고 이 방식을 거울내장형 FP간섭계를 이용한 온도센서에 적용하였다. 온도센서소자로 cavity length가 1cm인 FP간섭계를 이용하여 실온에서 360.deg.C에 걸쳐 분해능 2.7.deg.C로 측정하였으며 이때 최대측정속도는 $ 1.378*10^{5}$.deg.C/sec로 계산되었다. 이 방식에서 분해능과 최대측정속도는 반비례 관계를 가지며 감지 광섬유의 길이에 비례하여 분해능을 높일 수 있다. 또한 6개까지의 센서소자를 한개의 광원과 광검출기로 모니터하는 다중화 센싱 또한 가능한 신호처리 방식으로써 불평형 간섭계를 이용한 모든 종류의 센서에 대해 적용이 가능하다.

  • PDF

A study on Temperature measurement system with Optical fiber and fluorescent material (광섬유를 이용한 형광식 온도센서 시스템에 관한 연구)

  • Im, Chang-Man;Kim, Hyun-Duck;Lee, Myong-Gu;Park, Mi-Gnon
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.67-71
    • /
    • 1990
  • This paper is dedicated to a research on fluorescent temperature-sensor system, which analyses the characteristic of fluorescent material and observes the relation between temperature and time delay of reflected beam from red light through experiment. From the experiment, We know that the reflected be am from flourescent material has some time delay. The intensity of reflected beam is inversly proportional to the temperature around the material.

  • PDF