• Title/Summary/Keyword: Fiber grating

Search Result 546, Processing Time 0.019 seconds

Development flexible force sensor using fiber bragg grating (광섬유 브래그 격자를 이용한 촉각센서용 유연 단위 힘 센서 개발)

  • Heo, Jin-Seok;Kim, Man-Sub;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • This paper describes the flexible force sensor using fiber Bragg grating (FBG) and silicone rubber for the tactile sensation to detect the distributed normal force. The newly designed FBG flexible force has simple structure and can be easily multiplexed with simple wiring compared with the other electric mechanical sensors. We designed the flexible silicone rubber transducer and found the optimum embedding position of FBG in the transducer using the finite element analysis. This flexible force sensor has good performance and is immunity to the electromagnetic field compared with any other kinds of small force sensors for tactile sensation.

A Frequency Stable and Tunable Optoelectronic Oscillator Using an Optical Phase Shifter and a Phase-shifted Fiber Bragg Grating

  • Wu, Zekun;Zhang, Jiahong;Wang, Yao
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.634-641
    • /
    • 2022
  • A frequency stable and tunable optoelectronic oscillator (OEO) incorporating an optical phase shifter and a phase-shifted fiber Bragg grating (PS-FBG) is designed and analyzed. The frequency tunability of the OEO can be realized by using a tunable microwave photonic bandpass filter consisting of a PS-FBG, a phase modulator. The optical phase compensation loop is used to compensate for the phase variations of the RF signal from the OEO by adjusting an optical phase shifter. Simulation results demonstrate that the output RF signals of the OEO can be tuned in a frequency range of 118 MHz to 24.092 GHz. When the ambient temperature fluctuates within ±3.9 ℃, the frequency drifts of the output RF signals are less than 68 Hz, the side-mode suppression ratios are more than 69.39 dB, and the phase noise is less than -92.49 dBc/Hz at a 10 kHz offset frequency.

Measuring strain on fiber Bragg grating sensors with a linear wavelength sweeping laser (파장 선형 스위핑 레이저를 이용한 광섬유 격자 센서의 스트레인 측정)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.420-428
    • /
    • 2021
  • In this study, linearized sweeping of a wavelength sweeping laser was realized. This technique was used to measure the strain on a fiber Bragg grating(FBG) sensor. For linear sweeping, PID control over the wavelength difference between linear and nonlinear sweeping was employed. The performance test showed that linear sweeping with a 46 nm range and a 1 kHz frequency held up well with a 99.5 % decrement in nonlinearity after the 120th feedback. When attached to a strain gage, the FBG sensor registered strain that matched the data sheet within a difference of 4.5[με]. Altogether, linear sweeping can play a leading role in monitoring a safety of large SOC structures as well as in other wavelength sweeping laser related fields.

The characteristics of dispersion compensation in uniform fiber grating (일반광섬유격자의 분산보상 특성 분석)

  • Lee, J.H.;Song, J.H.;Lee, K.S.;Lee, Y.S.;Jeon, C.O.;Jeon, K.I.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1834-1836
    • /
    • 1998
  • The characteristics of dispersion compensation in uniform fiber grating is studied according to grating length, the refractive index modulation depth, and Gaussian window parameter(G). A 50cm-long uniform grating apodized by Gaussian function(G=10) with bandwidth of ${\sim}0.8nm$ and small noise is designed.

  • PDF

The characteristics of tilted grating in depressed- and step- index fiber and its application (Depressed index type과 Step index type 광섬유에서의 경사진 브래그격자 특성과 응용)

  • 권서원;이상배;최상삼;박진우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.83-91
    • /
    • 1998
  • Fiber Bragg grating which has a blazed ang1e to the plane of incident wave generates a side-mode as well as main-mode. The side-mode has an identical characteristics with a long period grating that couples with a cladding mode, so rejects the special wavelength. We experimented on the side-mode characteristics with two fibers which Ge doped depressed index fiber and very high photosensitive H$_2$ loaded step index fiber according to the tilted angle. Also, using a phase mask equipped with rotation plate which has 0.02$^{\circ}$ resolution, we can control the bandwidth and the peak value of a total loss spectrum by aligned tilted grating in a fiber and using this, tried to compose the ASE band rejection filter of the Erbium doped fiber amplifier.

  • PDF

A Study on n FBG Weight Sensor (광파이버 브래그 격자형 무게 센서에 관한 연구)

  • Lee, Jong-Jong;Jung, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.721-725
    • /
    • 2007
  • A fiber optic based weight sensor has fabricated using a fiber Bragg grating with a weight sensitive. The sensing concept exploits the inherent characteristics of the FBG and is based on the strain effect induced in the fiber Bragg grating through. A direct indication of the weight level is given by the shift of the Bragg wavelength caused by the expansion of the sensing material. A FBG behaves like a spectral filter which has inherent characteristics that render it very sensitive to strain and temperature. The sensing principle is also based on the strain effect induced in the FBG through the caused by the weight. The experimental setup used for the initial investigation to characterize the mass response of the sensor. The transmitted signal from the sensor was monitored using an optical spectrum analyzer with a resolution bandwidth of 0.4nm. In this paper, we presented the spectral characterization and shaping of FBG by scanning a mass element that affects a small grating fraction at a time, without permanent effects on the optical fiber when the various wavelength and strain is removed. That is, destruction when the optical fiber for weight is physically damaged.

  • PDF

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

Research on the Mechanical Strength of Fiber Bragg Grating Sensor Adapting to Railway Structure (철도 구조물 적용을 위한 FBG 센서의 기계적 강도에 관한 연구)

  • Yoon, Hyuk-Jin;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2009
  • In order to apply FBG(Fiber Bragg Grating) sensor as one of reliable sensors in the commercial railway structure, the reliability of FBG sensor in the mechanical strength viewpoint have to be confirmed and the maximum strain should surpass the fracture strain of the host structure to measure the measurands until the host structures fail. In this paper, several factors that influence the mechanical failure strength of fiber Bragg grating sensors were analyzed. A set-up for dynamic tensile testing of optical glass fibers with fiber Bragg gratings was made. To increase the FBG failure strength, techniques relying on the H2 loading treatment and stripping methods were established and testified as a result of the tensile strength test of optical fibers.

Fabrication of Fiber Bragg gratings using a tension controller for broad wavelength linewidth (반사 파장 선폭 확장을 위해 장력 조절기를 적용시킨 광섬유 브래그 격자(Fiber Bragg grating) 제작 기술)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.350-356
    • /
    • 2012
  • The tension effect on fiber Bragg gratings was analyzed and the linearity of 1.24 nm/10kpsi was obtained when Bragg wavelength was varied within 3 nm by applied tension. Using tension control method, different center wavelength fiber Bragg grating(FBG) were fabricated by only single period phase mask. These serially connected four FBGs showed the transmission spectrum of 1.5 nm linewidth as a 3 dB bandwidth which was twice that of a conventional FBG.

Study on Thermal Behavior of Unidirectional Composite Materials using Embedded Optical Fiber Sensors (삽입되어진 광섬유 센서를 이용한 일방향 적층 복합재료의 열적 거동 연구)

  • 김승택;전흥재;최흥섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.251-257
    • /
    • 1999
  • Smart structure that contains sensors, which are either embedded in a composite material or attached to a structure, is currently receiving considerable attention. Fiber Bragg grating sensor, one of the optical fiber sensors, has been widely used to sense strain and temperature for smart structures since both parameters change the resonant frequency of the grating. In this paper, according to the various heating and cooling conditions the thermal behavior of unidirectional composite material was monitored by embedding the fiber Bragg grating sensors in the longitudinal and transverse directions of unidirectional composites. The thermal behavior of unidirectional composite material was monitored for various heating and cooling rates and applied pressure. It was found that the thermal behavior was unaffected by pressure variations and heating and cooling rates applied to the composites. The thermal strains were measured by considering the shift in Bragg wavelength that was generated by the thermal expansion of composite specimen. The longitudinal and transverse C.T.E.'s were also obtained from the corresponding temperature-thermal strain curves.

  • PDF