• 제목/요약/키워드: Fiber failure

검색결과 1,167건 처리시간 0.023초

AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구 (A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique)

  • 이진경;이준현;장일영
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

I-fiber 스티칭 공법이 적용된 Single-lap Joint의 강도 특성 및 파손 신호 검출 연구 (A Study on the Strength Characteristics and Failure Detection of Single-lap Joints with I-fiber Stitching Method)

  • 최성현;송상훈;안우진;최진호
    • Composites Research
    • /
    • 제34권5호
    • /
    • pp.317-322
    • /
    • 2021
  • 적층 복합재의 특성상 두께 방향 물성이 취약하여 비틀림, 저속충격, 피로 하중 등 복합 하중을 받게 되면 재료 내부의 미세크랙 진전을 통해 층간분리 현상이 발생하게 된다. 이를 방지하고자 Z-pinning, Stitching 등 다양한 3차원 보강 공법과 구조물의 미세균열을 실시간으로 검출하는 구조 건전성 감시 기법이 꾸준히 연구되고 있다. 본 논문에서는 I-fiber 스티칭 공법으로 보강된 Single-lap joint를 Co-curing 방법으로 제작하였으며, 제작된 시편의 강도 및 파손신호 검출 특성을 평가하였다. 균열과 파손신호 검출을 위하여 전기저항법과 AE법을 사용하였으며, 신호분석을 위한 전용회로를 제작하여 인장시험 중의 파손신호를 분석하였다. 실험결과, I-fiber 스티칭으로 보강된 Single-lap joint 시편은 보강이 없는 Co-cured single-lap joint 시편에 비해 강도가 약 44.6% 향상되었다. 또한, I-fiber로 보강된 Single-lap joint 시편은 강도 향상과 더불어 전기저항법과 AE법에 의한 파손 검출이 모두 가능하므로 파손 모니터링에도 효과적인 구조임을 확인하였다.

Single Fiber Composite(SFC) 시험법과 Acoustic Emission(AE)를 이용한 고분자 복합재료 계면전단강도 및 미세파손기구의 해석

  • 이준현;박종만;윤동진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.656-659
    • /
    • 1993
  • The failure phenomenon of Dual Basalt Fibers Reinforced Epoxy Composites(DFC) under tensile load was studied using acoustic emission(AE) technique. AE amplitude and AE energy were mainly associated with the internal microscopic failure mechanism of DFC specimen, such as fiber fracture, matrix cracking, and fiber/matrix debonding. Fiber failures in the DFC specimens were distinguishable by showing the highest AE energy amplitude. They were dependant on the fiber diameters. Matrix cracking was determined from the relatively lower AE amplitude and AE energy, whereas fiber/matrix debonding could not be successfully isolated. AE method, however, can be applicable to the fragmentation method for interfacial strength(IFSS) in DFC specimens with adjusting the threshold to isolate fiber breaks from matrix crack and debonding.

  • PDF

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.

섬유시트 보강 구조체의 거동에 관한 해석적 연구 (Analytical Study of Behavior on Structure Reinforced Fiber Sheet)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제12권2호
    • /
    • pp.107-112
    • /
    • 2009
  • The effective reinforcement methods of structure is required to improve the durability of existing structures. Recently, the continuous fiber sheets to the concrete structures are widely used in the earthquake-proof reinforcement method. This study examines suitability and effect to concrete structure of fiber by FEM analysis. The result of analysis is as follows; All specimens occurred bending tensile failure at the middle span. Ultimate strength of specimen in the RC and reinforced RC specimen were 53.9 kN, 56.3 kN respectively and it was some low by degree 0.89, 0.82 to compare with calculated result. The deflection of specimen at the middle span occurred in approximately 0.2 mm, and did linear behavior in load 20 kN by seat reinforcement. Stiffness did not decrease by occurrence in the finer crack and reinforcement beam's flexure stiffness was increased until reach in failure. To compare calculated value and analysis value, it almost equal behavior in the elastic reign and can confirm effectiveness of analysis. Crack was distributed uniformly by reinforcement of fiber seat at failure and it do not occurred stiffness decreases.

  • PDF

Crack pattern and failure mode prediction of SFRC corbels: Experimental and numerical study

  • Gulsan, Mehmet Eren;Cevik, Abdulkadir;Mohmmad, Sarwar Hasan
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.507-519
    • /
    • 2021
  • In this study, a new procedure was proposed in order to predict the crack pattern and failure mode of steel fiber reinforced concrete (SFRC) corbels. Moreover, an experimental study was carried out in order to investigate the effect of several parameters, such as compressive strength, tensile strength, steel fiber ratio, shear span on the mechanical behavior of SFRC corbels in detail. Totally, 24 RC and SFRC corbels were prepared for the experimental study. Experimental results indicate that each investigated parameter has noticeable effect on the load capacity and failure mode of SFRC corbels. Moreover, finite element (FE) model of the tested corbels were prepared and efficiency of FE model was investigated for further studies. Comparison of FE and experimental results show that there is an acceptable fit between them regarding load capacity and crack patterns. Thereafter, parametric study was carried out via FE analyses in order to obtain a methodology for crack pattern and failure mode prediction of SFRC corbels. As a result of parametric studies, a new procedure was proposed as flowcharts in order to predict the failure mode of SFRC corbels for normal and high strength concrete class separately.

고온다습 조건($82.2^{\circ}C$)에서 2열 볼트 체결 복합재 조인트의 강도에 관한 실험적 연구 (An Experimental Study on the Strength of Two Serial Bolt-Fastened Composite Joints under Elevated Temperature and Humid Condition)

  • 김효진
    • Composites Research
    • /
    • 제22권5호
    • /
    • pp.30-36
    • /
    • 2009
  • 복합재 부품의 전형적인 조인트 형태를 평가하기 위해서, 2열 볼트 체결 탄소섬유강화 복합재의 파손강도와 파손 모드에 대하여 연구를 수행하였다. 연구는 상온과 고온다습 조건에서 적층과 형상을 변수로 실험적으로 수행되었다. 실험결과를 바탕으로 다음과 같은 결론을 얻었다. 하중-변위 선도는 두 가지 형태로 관찰되었으며, 각 파손 모드는 하중-변위 선도로 특징지어진다. 고온다습 조건의 파손형태는 베어링 파손 모드이며, 베어링 파손 모드에서 파손 강도는 유효강성의 영향이 크지 않다고 분석된다. 고온다습 조건의 파손강도 감소는 침투한 수분에 의해 섬유와 모재의 층간 결합부의 물성 저하에 기인한다.

치주지지가 감소된 상태에서 섬유강화형 포스트로 수복한 치아의 실패양상 분석 (AN ANALYSIS OF FAILURE MODE OF TEETH RESTORED WITH FIBER-REINFORCED POSTS UNDER THE CONDITION OF BONY RESORPTION)

  • 이병우;이양진;조리라;박찬진
    • 대한치과보철학회지
    • /
    • 제41권2호
    • /
    • pp.232-242
    • /
    • 2003
  • Statement of problem : Fiber-reinforced posts have lower modulus of elasticity than titanium post or cast post-core. With this similar elasticity to that of dentin, fiber-reinforced posts have been known to have a tendency to reduce the risk of root fracture. However, there were few studies on the teeth restored with fiber-reinforced posts under the condition of reduced periodontal support. Purpose : The purpose of this study was to evaluate the fracture strength and failure mode of endodontically treated teeth restored with fiber-reinforced posts and titanium posts under the condition of reduced periodontal support. Material and method : Extracted human maxillary incisor roots were divided into 3 groups (group 1 carbon fiber post, group 2 : glass fiber post, and group 3 : titanium alloy post). After coronectomy and endodontic treatment, teeth were restored with each post systems and resin core according to the manufacturer's recommendation. Then, teeth with simulated periodontal ligament were embedded in the acrylic resin blocks at the level of 4 mm below the cemento-enamel junction. Each specimen was exposed to $10^5$ load cycles with average 30 N force in $36.5^{\circ}C$ water using a computer-controlled chewing simulator. Loads were applied at $45^{\circ}$ angle to the long axis of the teeth. After cyclic loading, teeth were subjected a compressive load until failure at a crosshead speed of 0.5 mm/min. Fracture strength (N) and failure mode were examined. The fracture strength was analyzed with one-way ANOVA and the Scheffe adjustment at the 95% significance level. Results and conclusion : The results were as follows. 1. There was no statistically significant difference in the mean fracture strength among the groups (P<.05). 2. Carbon fiber post and glass fiber post group showed less root fracture tendency than control group. 3. All specimens with root fractures showed fracture lines above the level of acrylic resin block, except for only one specimen in group 3.