• Title/Summary/Keyword: Fiber distribution

Search Result 985, Processing Time 0.03 seconds

Additive Effects in Living Cationic Polymerization of tort-Butyl Vinyl Ether, initiated by Iodine

  • Jeon, Hyunjeong;Kwon, Soonhong;Han, Kyuchan;Mah, Soukil
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • Living nature was appeared in the cationic polymerization of tort-butyl vinyl ether (TBVE), initiated by iodine, carried out in toluene at -78$^{\circ}C$. It was found that the number average molar mass of the resulting polymer (equation omitted) increases linearly as the conversion to polymer increase which reveals that there is no operation of chain transfer or termination process in this system. The polymers having narrow distribution and having molar mass of the resulting polymers are dependent on molar ratio of monomer and iodine.

  • PDF

Internal Structure and Pigment Granules in Colored Alpaca Fibers

  • Wang Huimin;Liu Xin;Wang Xungai
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.263-268
    • /
    • 2005
  • Alpaca fibers have some distinct properties such as softness and warmth, which have not been fully understood in combination with the fiber internal structures. In the present investigation, the internal structures of alpaca fibers have been closely examined under the scanning electron microscope (SEM), especially in the longitudinal direction. The results showed that numerous pigment granules reside loosely inside pockets in brown and dark-brown alpaca fibers. These pigment granules were mainly distributed inside the cortical cells, the medullation regions as well as underneath the cuticles. Their size in the brown alpaca fibers was smaller and more uniformly round than in the dark-brown fibers. These granules in colored alpaca fibers loosen the bundle of cortical cells, providing many crannies in the fibers which may contribute to the superior flexibility, warmth and softness of the fibers. Moreover, there are no heavy metal elements found in the granules. The mordant hydrogen peroxide bleaching employed could eliminate the pigment granules and create many nano-volumes for further dyeing of fibers into more attractive colors.

Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites (콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구)

  • Kim, M.S.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF

A numerical study on the damage of projectile impact on concrete targets

  • Lu, Gang;Li, Xibing;Wang, Kejin
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the numerical simulation of the rigid 12.6 mm diameter kinetic energy ogive-nosed projectile impact on plain and fiber reinforced concrete (FRC) targets with compressive strengths from 45 to 235 MPa, using a three-dimensional finite element code LS-DYNA. A combined dynamic constitutive model, describing the compressive and tensile damage of concrete, is implemented. A modified Johnson_Holmquist_Cook (MJHC) constitutive relationship and damage model are incorporated to simulate the concrete behavior under compression. A tensile damage model is added to the MJHC model to analyze the dynamic fracture behavior of concrete in tension, due to blast loading. As a consequence, the impact damage in targets made of plain and fiber reinforced concrete with same matrix material under same impact velocities (650 m/s) are obtained. Moreover, the damage distribution of concrete after penetration is procured to compare with the experimental results. Numerical simulations provide a reasonable prediction on concrete damage in both compression and tension.

A Numerical Analysis for the Strength Improvement of Composite Wind Turbine Blade (풍력발전기용 복합재 블레이드의 강도향상을 위한 수치해석)

  • Kwon, Oh-Heon;Kang, Ji-Woong;Jeong, Woo-Yul
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.7-12
    • /
    • 2010
  • The average growth in the wind power energy market during the past five years has been 26% per year. Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind power system and the rotor blade concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. In addition, it is necessary to analyze and evaluate the stress distribution and deformation for them in the design level. This study shows the result that CFRP rotor blade of wind turbine satisfies the strength and deformation through numerical analysis using the commercial finite element analysis program.

A Study on Partial Discharge Measurement using Optical Fiber Sensors (광섬유 센서를 이용한 부분방전 측정연구)

  • Lee, June-Ho;Lee, Cheol-Kyou
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.922-924
    • /
    • 1998
  • In this paper, an optical fiber sensor(OF sensor) utilizing the principal of Mach-Zehnder interferometer were proposed to detect the partial discharge signals in insulating oil. At first the AC breakdown signals were detected to check the response of the OF sensor. The detected signals from OF sensor was consistent with that from current probe. After the response checking, simultaneous measurements and continuous recording were made of electrical and the OF sensor signals from partial discharge(PD) produced by IEC(b) electrode system immersed in insulating oil. The continuous recording made it possible to extract basic quantities of PD from the OF sensor signals, such as pulse phase and pulse amplitude distribution. Through the signal analysis, the absolute peaks of the OF sensor PD signal was found to be increased with the amplitude of electrical signals, and these results mean that there is a strong correlation between OF sensor and electrical PD signals. It was demonstrated that the OF sensor in this research had a possibility to detect the PD signals in power apparatus.

  • PDF

A Simulation Method for Modeling the Morphology and Characteristics of Electrospun Polymeric Nanowebs

  • Kim Hyungsup;Kim Dae-Woong;Seo Moon Hwo;Cho Kwang Soo;Haw Jung Rim
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • We developed an algorithm to simulate the generation of virtual nanowebs using the Monte Carlo method. To evaluate the pore size of the simulated multi-layered nanoweb, an estimation algorithm was developed using a ghost particle having zero volume and mass. The penetration time of the ghost particle through the virtual nanoweb was dependent on the pore size. By using iterative ghost particle penetrations, we obtained reliable data for the evaluation of the pore size and distribution of the virtual nanowebs. The penetration time increased with increasing number of layers and area ratio, whereas it decreased with increasing fiber diameter. Dimensional analysis showed that the penetration time can be expressed as a function of the fiber diameter, area ratio and number of layers.

Steam Activation Behaviors of Oxidatively Stabilized Petroleum-based Pitch Fibers Spun by Melt-blown Method

  • Kim, Chan;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.93-98
    • /
    • 2002
  • Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 $m^2/g$ with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 ${\AA}$ with the larger value from the more severe activation condition.

  • PDF

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.

Segregation Mechanism in Si1-xGex Single Crystal Fiber Growth by Micro-pulling Down Method

  • Uda, Satoshi;Kon, Junichi;Shimamura, Kiyoshi;Fukuda, Tsuguo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.399-421
    • /
    • 1996
  • (1) The solute distribution mechanism was analyzed for the Si0.95Ge0.05 single crystal fiber by u-PD method. (2) The steady-state solutions were obtained for the molten zone and the capillary zone. (3) The effect of the convection in the molten zone on partitioning was not significant for many cases. (4) Intermediate transient rise of Ge was shown by the sudden change of the growth velocity or molten zone height. (5) Periodic compositional modulation can be designed by using the intermediate transient.

  • PDF