Browse > Article
http://dx.doi.org/10.12989/cac.2012.9.1.021

A numerical study on the damage of projectile impact on concrete targets  

Lu, Gang (Shaw Stone & Webster Nuclear)
Li, Xibing (School of Resources and Safety Engineering, Central South University)
Wang, Kejin (National Concrete Pavement Center, Iowa State University)
Publication Information
Computers and Concrete / v.9, no.1, 2012 , pp. 21-33 More about this Journal
Abstract
This paper presents the numerical simulation of the rigid 12.6 mm diameter kinetic energy ogive-nosed projectile impact on plain and fiber reinforced concrete (FRC) targets with compressive strengths from 45 to 235 MPa, using a three-dimensional finite element code LS-DYNA. A combined dynamic constitutive model, describing the compressive and tensile damage of concrete, is implemented. A modified Johnson_Holmquist_Cook (MJHC) constitutive relationship and damage model are incorporated to simulate the concrete behavior under compression. A tensile damage model is added to the MJHC model to analyze the dynamic fracture behavior of concrete in tension, due to blast loading. As a consequence, the impact damage in targets made of plain and fiber reinforced concrete with same matrix material under same impact velocities (650 m/s) are obtained. Moreover, the damage distribution of concrete after penetration is procured to compare with the experimental results. Numerical simulations provide a reasonable prediction on concrete damage in both compression and tension.
Keywords
concrete; material model; numerical simulation; projectile penetration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rate", Mater. Struct., 24, 425-450.   DOI   ScienceOn
2 Bindiganavile, V., Banthia, N. and Aarup, B. (2002), "Impact response of ultra-high strength-reinforced cement composite", ACI Mater. J., 99(6), 543-548.
3 Cao, J. and Chung, D.D.L. (2002), "Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement", Cement Concrete Res., 32, 817-819.   DOI   ScienceOn
4 Clifton, J.R. (1982), Penetration resistance of concrete-a review, National Bureau of Standards Special Publication, Washington D.C., 480-485.
5 Collins, A., Chapman, D. and Proud, W. (2007), "Shock compression of condensed matter", AIP Conference Proceedings, 955, 497-500.
6 Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates", Comp. Struct., 86, 145-163.   DOI   ScienceOn
7 Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates", Comp. Struct., 86, 164-180.   DOI   ScienceOn
8 Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact Eng., 35, 319-335.   DOI   ScienceOn
9 Dancygier, A.N. and Yankelevsky, D.Z. (1996), "High strength concrete response to hard projectile impact", Int. J. Impact Eng., 18(6), 583-599.   DOI   ScienceOn
10 Dancygier, A.N. and Yankelevsky, D.Z. (2002), "Penetration mechanisms of non-deforming projectiles into reinforced concrete barriers", Struct. Eng. Mech., 13, 171-186.   DOI
11 Degen, P.P. (1980), "Perforation of reinforced concrete slab by rigid missiles", J. Struct. Div. - ASCE, 106(7), 1623-1642.
12 Forrestal, M.J. and Luk, V.K. (1988), "Dynamic spherical cavity expansion in a compressible elastic plastic solid", J. Appl. Mech., 55, 275-279.   DOI
13 Gebbeken, N. and Ruppert, M. (2000), "A new material model for concrete in high-dynamic hydrocode simulations", Arch. Appl. Mech., 70, 463-478.   DOI   ScienceOn
14 Grady, D.E. and Kipp, M.E. (1980), "Continuum modeling of explosive fracture in oil shale", Int. J. Rock Min. Sci., 17, 147-157.   DOI   ScienceOn
15 Hanchak, S.J., Forrestal, M.J., Young, E.R. and Ehrgott, J.Q. (1992), "Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths", Int. J. Impact Eng., 12(1), 1-7.   DOI   ScienceOn
16 Holmquist, T.J., Johnson, G.R. and Cook, W.H. (1993), "A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures", Proc. 14th Int. Sym. Ball, Quebec, Canada, 591-600.
17 Islam, M.J., Liu, Z. and Swaddiwudhipong, S. (2011), "Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile", Comput. Concrete, 8(1), 111-123.   DOI
18 Leppänen, J. (2006), "Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension", Int. J. Impact Eng., 32, 1828-1841.   DOI   ScienceOn
19 van Mier, J.G.M. (1997), Fracture processes of concrete, CRC Press, ISBN:0-8493-9123-7, 284-285.
20 Lemaitre, J. (1992), A course on damage mechanics, Springer-Verlag Press, ISBN:3-540-53609-4.
21 Li, X.B. and Gu, D.S. (1994), Rock impact dynamics, Central South University of Technology Press, China, ISBN:7-81020-670-2/TD.034.
22 Lok, T.S., Zhao, P.J. and Lu, G. (2003), "Using the split Hopkinson pressure bar to investigate the dynamic behaviour of SFRC", Mag. Concrete Res., 55(2), 183-191.   DOI   ScienceOn
23 LS-DYNA Keyword User's Manual Ver. 950 (1999), Livermore software technology corporation, LSCT.
24 Luk, V.K. and Forrestal, M.J. (1987), "Penetration into semi-infinite reinforced concrete target with spherical and ogival nose projectiles", Int. J. Impact Eng., 6(4), 291-301.   DOI   ScienceOn
25 Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95(6), 735-739.
26 Mehta, P.K. and Monteriro P.J.M. (2006), Concrete microstructure, properties, and materials, McGraw-Hill, New York, 612-627.
27 O'Neil, E.F., Neeley, B.D. and Cargile, J.D. (1999), "Tensile properties of very-high-strength concrete for penetration-resistant structures", Shock. Vib., 6(5), 237-245.   DOI
28 Ou, Z., Duan, Z. and Huang, F. (2010) "Analytical approach to the strain rate effect on the dynamic tensile strength of brittle materials", Int. J. Impact Eng., 37, 942-945.   DOI   ScienceOn
29 Polanco-Loria, M., Hopperstad, O.S., Børvik, T. and Berstad, T. (2008), "Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model", Int. J. Impact Eng., 35, 290-303.   DOI   ScienceOn
30 Riedel, W., Thoma, K., Hiermaier, S. and Schmolinske, E. (1999), "Penetration of reinforced concrete by BETAB- 500 numerical analysis using a new macroscopic concrete model for hydrocodes", Proc. 9th Int. Sym. Interaction of the Effects of Munitions with Structures, Berlin, Germany, 315-322.
31 Ross, C.A., Jerome, D.M., Tedesco, J.W. and Hughes, M.L. (1996), "Moisture and strain rate effects on concrete strength", ACI Mater. J., 93(3), 293-300.
32 Schuler, H., Mayrhofer, C. and Thoma, K. (2006), "Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates", Int. J. Impact Eng., 32(10), 1635-1650.   DOI   ScienceOn
33 Shockey, D.A., Curran, D.R., Seaman, L., Rosenberg, J.T. and Petersen, D.F. (1974), "Fragmentation of rock under dynamic loads", Int. J. Rock. Mech. Min. Sci. Geomech., 11, 303-317.   DOI   ScienceOn
34 Suaris, W. and Shah, S.P. (1984), "A rate sensitive damage theory for brittle solids", J. Eng. Mech. - ASCE, 110(6), 985-997.   DOI   ScienceOn
35 Taylor, L.M., Chen, E.P. and Kuszmaul, J.S. (1986), "Microcrack-induced damage accumulation in brittle rock under dynamic loading", Comput. Method. Appl. M., 55, 301-320.   DOI   ScienceOn
36 Zhao, P.J. (2003), "The split Hopkinson pressure bar for testing concrete and steel fibre reinforced concrete", Ph.D. Thesis, Nanyang Technological University, Singapore.
37 Zhang, M.H., Sharif, M.S.H. and Lu, G. (2007), "Impact resistance of high-strength fibre reinforcedconcrete", Mag. Concrete Res., 59(3), 199-210.   DOI   ScienceOn
38 Zhang, M.H., Shim, V.P.W., Lu, G. and Chew, C.W. (2005), "Resistance of high-strength concrete to projectile impact", Int. J. Impact Eng., 31(7), 825-841.   DOI   ScienceOn
39 Zhou, X.Q., Kuznetsov, V.A., Hao, H. and Waschl, J. (2008), "Numerical prediction of concrete slab response to blast loading", Int. J. Impact Eng., 35(10), 1186-1200.   DOI   ScienceOn