• Title/Summary/Keyword: Fiber distribution

Search Result 985, Processing Time 0.029 seconds

The Effect of Success Factors on SCM Performance in Fashion Industry Stream (패션산업 스트림에 따라 SCM 성공요인이 SCM 성과에 미치는 영향연구)

  • Choi, Jin-Hyeok;Shin, Sang-Moo
    • Journal of Fashion Business
    • /
    • v.16 no.2
    • /
    • pp.12-26
    • /
    • 2012
  • Fashion industry characteristically goes through many steps to manufacture and to retail apparel products. Complex inter-industry channels with many intermediaries in fashion industry provoked many problems regarding recognizing customer's need, delivering time, flexibility, and inventory control. Therefore, the purposes of this study were to investigate the differences between apparel manufacturing and distribution process in SCM success factors and performances, and to investigate how SCM success factors affect on performances. Questionnaire was developed and distributed to apparel industry. The returned 116 questionnaires were analyzed by Cronbach's alpha for internal validity, factor analysis, t-test, and regression analysis with SPSS14.0. The results of this study were as follows: There was significant difference of SCM success factors between apparel manufacturing and distribution regarding process standardization and integration. There were significant differences of SCM performances such as reaction for customer, flexible management, cost minimization, and maximized asset utilization which distribution was higher than apparel manufacturing process. In apparel manufacturing, SC strategic relation, and integrative management influenced upon reaction for customer of SCM performances. SC integrative management influenced upon cost minimization. SC integrative management influenced upon maximized asset utilization. In distribution, SC strategic relation, and activated support for SCM influenced upon reaction for customer of SCM performances. SCM specialization, credible relationship among supply chains, activated support for SCM, and SC integrative management influenced upon cost minimization. SCM specialization, credible relationship among supply chains, and SC integrative management influenced upon maximized asset utilization.

MSSI System with Dispersion-managed Link Configured with Random-inverse Dispersion Maps (랜덤-반전 분산 맵으로 설계된 분산 제어 링크를 갖는 MSSI 시스템)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.457-462
    • /
    • 2023
  • We proposed a flexible link configuration in a system combining mid-span spectral inversion (MSSI) and dispersion management used for long-distance transmission of high-capacity optical signals such as wavelength division multiplexing signals, and examined specific methods to increase chromatic dispersion and nonlinear distortion compensation effects. The dispersion map proposed to increase the flexibility of dispersion-managed link configuration has a 'random-inverse' structure. That is, in the proposed dispersion map, the residual dispersion per span (RDPS) of each fiber span in the first half section up to the optical phase conjugator is randomly distributed, and the RDPS distribution in the second half section reverses the distribution pattern of the first section. Although the proposed dispersion map has a random distribution of RDPS, it was confirmed that the distortion compensation effect is improved due to the fact that the dispersion profile is symmetrical with respect to the optical phase conjugator. In the dispersion map of the 'random-inverse' configuration, it was also confirmed that the compensation effect of the distorted wavelength division multiplexing signal becomes improved when the magnitude of the RDPS allocated to each fiber span is large.

Analysis on fatigue life distribution of composite materials (복합재료 피로 수명 분포에 관한 고찰)

  • 황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.790-805
    • /
    • 1988
  • Static strength and fatigue life scattering of glass fiber reinforced epoxy composite materials has been studied. Normal, lognormal, two-parameter and three-parameter Weibull distribution functions are used for strength and one-stress fatigue life distribution. The value of mean fatigue life is analysed using mean fatigue life, mean log fatigue life and expected value of 2 and 3-parameter Weibull distribution functions. Modification on non-statistical cumulative damage models is made in order to interpret the result of two-stress level fatigue life scattering. The comparison results show that 3-parameter Weibull distribution has better predictions in static strength and one-stress level fatigue life distributions. However, no advantage of 3-parameter Weibll distribution is found over 2-parameter Weibull distribution in two-stress level fatigue life predictions. It is found that two-stress level fatigue life prediction by the expanded equal rank assumption is close to the experimental data.

Production of Enzymatic Hydrolysate Including Water-soluble Fiber from Hemicellulose Fraction of Chinese Cabbage Waste (효소적 분해에 의한 배추부산물 hemicellulose 분획으로부터 수용성 식이섬유소 함유 가수분해물의 생산)

  • Park, Seo Yeon;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This study was performed to determine the optimal hydrolysis conditions for the production of hydrolysates, including water-soluble dietary fiber from Chinese cabbage, with commercial enzymes. The optimal pH and temperature for hydrolysis of the hemicellulose fraction were pH 5.0 and $40^{\circ}C$, and optimal enzyme concentrations were 45 units and 21 units for Shearzyme plus and Viscozyme L, respectively. The yields of the hydrolysate including the water-soluble dietary fiber from the hemicellulose fraction by Shearzyme plus and Viscozyme L were 22.64 and 24.73%, respectively, after a 72 h reaction. The molecular weight distribution of alcohol-insoluble fiber was characterized by gel chromatography; degradation of hemicellulose increased with increasing reaction time. Our results indicate that the hemicellulose fraction was degraded to water-soluble dietary fiber by enzymatic hydrolysis, and its hydrolysate could be utilized as new watersoluble food materials.

Effect of Periodic Walking on the Type II Muscle of Growing Suspended Rats (주기적인 보행이 성장하는 어린뒷다리부유쥐의 Type II 근육에 미치는 효과)

  • 최명애
    • Journal of Korean Academy of Nursing
    • /
    • v.26 no.2
    • /
    • pp.271-280
    • /
    • 1996
  • The purpose of this study was to determine the effect of periodic walking during hindlimb suspension on the mass, relative weight, fiber type distribution and cross-sectional area of Type I and II fibers in the developing Type II plantaris muscle. To examine the effectiveness of periodic walking on mass and fiber size, the hindlimbs of young female Wistar rats were suspended (HS group) and half of these rats walked on a treadmill for 45 min/day(15 min every 4 hours) at 5 meters/min at a 15 degree grade(HS-W group) After seven days of hindlimb suspension, the plantaris muscle wet weight was 28.40% significantly smaller(P<0.005) and relative plantaris muscle weight was 26.97% smaller compared with those of control rats(P<0.05). The plantaris muscle wet weight and the relative plantaris muscle weight increased by 46.60% and 49.23% respectively with periodic walking, moreover. the plantaris muscle wet weight and the relative plantaris muscle weight of the HS-W rats recovered to the level of the control rats. No change was observed in fiber type percentage of the developing plantaris muscle following one week of hindlimb suspension or periodic walking during hindlimb suspension. Type I and II fiber cross-sectional areas of the developing plantaris muscle were 42.51% and 43. 68% lower in the HS group than in the control group(p<0.0001), Type I and II fiber cross-sectional areas of the developing plantaris were 30.82% and 45.97% greater in the HS-W group than in the HS group(p<0.0001), whereas Type I and II fiber cross-sectional area of HS-W group were less than those of the control group(P<0.0001) The results suggest that periodic walking can attenuate developing plantaris muscle atrophy induced by hindlimb suspension.

  • PDF

The Effect of the CFRP/GFRP Composite Thickness on AE Characteristics and Mixed Mode Crack Behavior (CFRP/GFRP 적층복합재의 두께가 혼합모드 균열거동과 AE에 미치는 영향)

  • Yun, Yu-Seong;Kim, Da-Jin-Sol;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.9-14
    • /
    • 2014
  • Recently many efforts and researches have been done to cope with industrial facilities that require a low energy machines due to the gradual depletion of the natural resources. The fiber-reinforced composite materials in general have good properties and have the proper mechanical properties according to the change of the ply sequences and fiber distribution types. However, in the fiber-reinforced composite material, there are several problems, including fiber breaking, peeling, layer lamination, fiber cracking that can not be seen from the metallic material. Particularly, the fracture and delamination are likely to be affected by the thickness of the stacking laminates when the bi-material laminated structure is subjected to a load of the mixed mode. In this study, we investigated the effect of the thickness ratio of the difference in the CFRP/GFRP bi-material laminate composites by measuring the cracking behavior and the AE characteristics in a mixed mode loading, which may be generated in the actual structure. The results show that the thickness of the CFRP becomes more thick, the mode I energy release rate becomes a larger, and also the influence of mode I is greater than that of mode II. In addition, AE amplitude which shows the level of the damage in the structure was obtained the more damage in the CFRP with the thin thickness.

EFFECTS OF CHOPPED GLASS FIBER ON THE STRENGTH OF HEAT-CURED PMMA RESIN

  • Lee Sang-Il;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.589-598
    • /
    • 2001
  • The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured PMMA resin using glass fibers, have been suggested over the years. The aim of the present study was to investigate the effect of short glass fibers treated with silane coupling agent on the transverse strength of heat-polymerized PMMA denture base resin. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with PMMA powder in conventional mixer whose blade was modified to be blunt. Composite of glass fiber($11{\mu}m$ diameter, 3mm & 6mm length, silane treated) and PMMA resin was made. Transverse strength and Young's modulus were estimated. Glass fibers were incorporated with 1%, 3%, 6% and 9% by weight. Plasticity and workability of dough was evaluated. Fracture surface of specimens was investigated by SEM. The results of this study were as follows 1. 6% and 9% incorporation of 3mm glass fibers in the PMMA resin enhanced the transverse strength of the test specimens(p<0.05). 2. 6% incorporation of 6mm glass fibers in the PMMA resin increased transverse strength, but 9% incorporation of it decreased transverse strength(p<0.05). 3. When more than 3% of 3mm glass fibers and more than 6% of 6mm glass fibers were incorporated, Young's modulus increased significantly(p<0.05). 4. Workability decreased gradually as the percentage of the fibers increased. 5. Workability decreased gradually as the length of the fibers increased. 6. In SEM and LM, there was no bunching of fibers and no shortening of fibers.

  • PDF

An Isotopic Study of the Effects of Refining on Fiber

  • FRANCES L WALSH; SUJIT BANERJEE
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.31-36
    • /
    • 2006
  • Tritium has been used to directly measure the exchangeable hydrogen in bleached softwood kraft pulp. The hydrogen atoms associated with hydroxyl groups in pulp or with water contained in the pulp can dissociate and exchange with the hydrogen atoms in bulk water. Tritium is a radioactive isotope of hydrogen and behaves almost identically to it. The distribution of tritium between pulp and water ($k_{pw}$) can be easily measured and becomes an index of the protons available fur hydrogen bonding. Bleached kraft pulp was refined in a PFI mill to a range of freenesses. Tritiated water was added and the amount exchanged measured. There was a slight steady increase in $k_{pw}$ until approximately 300 CSF; $k_{pw}$ then rose sharply between 300 CSF and 100 CSF. This rise appears to correlate with FSP. It is likely that the action of refining on the fiber reaches a threshold at about 300 CSF causing the fiber surface to break open creating exponentially more surface area. This theory is visually confirmed through light microscopy. The slow increase in fibrillation of the fibers above 300 CSF correlates with the increase in $k_{pw}$. Beyond the threshold of 300 CSF a dramatic difference in fibrillation is shown, also corresponding with the large increase in $k_{pw}$. The freeness difference around 300 CSF is small, but the change in fiber properties is extreme within this region. This change in properties could lead to sheet breaks and other disruptions when producing products around the threshold. This study leads to a better understanding of how fiber changes during refining, resulting in a practical benefit of target freeness determination. Presently, freeness is selected based on product quality and on some measure of runnability. Yet, there are other considerations, demonstrated by the extreme change in fiber properties around 300 CSF.

  • PDF

Fluorescence Characteristic Analysis for Fiber Detection in Sectional Image of Fiber Reinforced Cementitious Composite (섬유 보강 시멘트계 복합재료의 단면 이미지에서 섬유 검출을 위한 섬유 형광 특성 분석)

  • Lee, Bang-Yeon;Park, Jun-Hyung;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • It is important to detect fibers in the sectional image of fiber reinforced cementitious composites (FRCC), since the fiber distribution is a crucial factor to predict or evaluate the mechanical performance of FRCC. In this paper, we investigated the fluorescence characteristics of Polyvinyl Alcohol (PVA) fibers, Polyethylene Terephthalate (PET) fibers, Polyethylene (PE) fibers, and Polypropylene (PP) fibers used in Engineered Cementitious Composites (ECC), which is a special kind of FRCC that incorporates synthetic fibers and exhibits extremely ductile behavior in uniaxial tension, to detect each fiber according to its type. Furthermore, optimum excitation and emission wavelengths were proposed on the basis of maximum difference of Relative Fluorescence Intensity (RFI) between two types of fibers used in the hybrid ECC. Optimum threshold values to discriminate two types of fibers using statistical tools were also proposed. Finally, images of four types of fibers obtained using a fluorescence microscope are compared.