• 제목/요약/키워드: Fiber distribution

Search Result 985, Processing Time 0.036 seconds

Preparation and Characterization of Activated Henequen Fiber

  • Jeong, Jong-Seon;Lee, Young-Seak;Yang, Xiao Ping;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.339-344
    • /
    • 2009
  • Henequen fiber was air-stabilized, carbonized, and steam-activated to obtain high surface area activated henequen fiber (AHF). Thermal behavior of henequen fibers has been studied by TGA. The structural morphology and characteristics were observed by SEM and BET surface area measurement. The yield of AHF from natural henequen was in the range of 20~25 wt%. Mesopores (2~2.5 nm) were developed on the AHF as the activation temperature was raised up to $700^{\circ}C$, and the band of mesopore size distribution moved to 15~30 nm when the activation were carried out at $900^{\circ}C$ for 30 min. The specific surface area and the total pore volume were about $1394\;m^2/g$ and $1.30\;cm^3/g$, respectively at this activation conditions.

Gradient of the Residual Stress distribution in Optical fiber by the Heat Treatment Temperature (열처리 온도에 따른 광섬유 잔류응력 분포의 변화)

  • Sin, In-Hui;Ju, Seong-Min;Han, Won-Taek;Kim, Deok-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.208-209
    • /
    • 2005
  • The gradient of the residual stress distribution by the heat treatment temperature in the commercial single mode fiber was investigated. The heat treatment of the optical fiber was carried out at 700${\circ}$C, 1100${\circ}$C, and 1200${\circ}$C for 1 hour by using the halogen lamp and the residual stress measurement of the optical fiber was accomplished by using the inverse linear polarizing method. Mechanical residual stress was relaxed and thermal residual stress was invested by the heat treatment.

  • PDF

Decaying/Expanding Distribution of RDPS in the Half Section of a Dispersion-Managed Optical Link Combined with Mid-Span Spectral Inversion

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.227-233
    • /
    • 2019
  • In long-haul optical communication system consisting of standard single-mode fiber spans and fiber amplifiers, such as the erbium-doped fiber amplifier, performance is deteriorated by signal distortion due to chromatic dispersion and nonlinearity of the fiber. A combination of dispersion management and optical phase conjugation is an effective technique to compensate for the distortion. In an optical link configured by this combination, a dispersion map mainly affects the compensation of the distorted optical signals. This paper proposes new dispersion maps configured by the decaying or expanding distribution of residual dispersion per span (RDPS) in a dispersion-managed link combined with a midway optical phase conjugator. The effect of the proposed dispersion maps on the compensation for distorted 24 channel × 40 Gbps wavelength-division multiplexed signals was assessed through numerical simulation. It was confirmed that all the proposed dispersion maps are most appropriate for the compensation and, furthermore, for the flexibility of link configuration than conventional links.

Effects of Wave Attenuation on the Acoustic Emission Amplitude Distribution of Injection-Molded Fiber/Plastic Composites (섬유/플라스틱 사출성형 복합재료의 음향방출 진폭분포에 대한 감쇠효과)

  • Choi, N.S.;Takahashi, Kiyoshi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • The attenuation of acoustic emission (AE) waves was evaluated for injection-molded short-fiber-reinforced thermoplastic composites employing simulated AE waves. Values of attenuation coefficient (${\alpha}$) decreased more with increasing fiber volume fraction ($V_f$) than that expected from a simple linear relation between ${\alpha}$ and $V_f$. The effect of wave attenuation was taken into account in a quantitative analysis of the AE peak amplitude distribution which was obtained from each zone partitioned in a specimen gage portion. The amplitude distribution compensated for the measured attenuation loss was exhibited almost similar in every zone of the specimen. Consequently, it was, shown that the AE amplitudes obtained from fiber/plastic composites were considerably affected by the attenuation.

  • PDF

Dispersion-Managed Link with Different Numbers of Fiber Spans and Asymmetric Distribution of RDPS (중계 구간의 개수가 다르고 RDPS가 비대칭인 분산 제어 링크)

  • Hong, Sung-Hwa;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.570-576
    • /
    • 2019
  • The configuration of dispersion-managed optical link with optical phase conjugator, which is placed at the non-midway of total transmission length, is proposed for implementing of the flexible optical network. The optical phase conjugator is located between the former half transmission section and the latter half transmission section, which are consisted of 6 fiber spans and 14 fiber spans respectively, and the averaged RDPS of each half transmission section are inconsistence. And, the artificial distribution of each fiber span's RDPS, which are gradually increased/decreased as the span numbers are increased, is adopted to compensate for the distorted wavelength division multiplexed channels. From the simulation results, it is confirmed that the compensation in dispersion-managed link configured by a special distribution pattern among 16 proposed patterns, in which the RDPS of each fiber spans are gradually decreased/increased in the former/latter half section with the small deviation, is suitable to compensate for the distorted wavelength division multiplexed channels.

Strain Transmission Ratio of a Distributed Optical Fiber Sensor with a Coating Layer (코팅된 분포형 광섬유 센서의 변형률 전달률)

  • Yoon, S.Y.;Kown, I.B.;Yu, H.S.;Kim, E.
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.429-434
    • /
    • 2018
  • We investigate strain transmissions of a surface bonded distributed optical fiber sensor considering strain variation according to positions. We first derive a strain transmission ratio depending on a wavelength of a strain distribution of the host structure from an analysis model. The strain transmission ratio is compared with numerical results obtained from the finite element method using ABAQUS. We find that the analytical results agree well with the numerical results. The strain transmission ratio is a function of a wavelength, i.e. the strain transmission ratio decreases (increases) as the wavelength of the host strain decreases (increases). Therefore, if an arbitrary strain distribution containing various wavelengths is given to a host structure, a distorted strain distribution will be observed in the distributed optical fiber sensor compare to that of the host structure, because each wavelength shows different strain transmission ratio. The strain transmission ratio derived in this study will be useful for accurately identifying the host strain distribution based on the signal of a distributed optical fiber sensor.

Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete

  • Moon, Jiho;Youm, Kwang Soo;Lee, Jong-Sub;Yun, Tae Sup
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • This study investigated the flowability and mechanical properties of cost-effective steel fiber reinforced ultra-high performance concrete (UHPC) by using locally available materials for field-cast application. To examine the effect of mixture constituents, five mixtures with different fractions of silica fume, silica powder, ground granulated blast furnace slag (GGBS), silica sand, and crushed natural sand were proportionally prepared. Comprehensive experiments for different mixture designs were conducted to evaluate the fresh- and hardened-state properties of self-consolidating UHPC. The results showed that the proposed UHPC had similar mechanical properties compared with conventional UHPC while the flow retention over time was enhanced so that the field-cast application seemed appropriately cost-effective. The self-consolidating UHPC with high flowability and low viscosity takes less total mixing time than conventional UHPC up to 6.7 times. The X-ray computed tomographic imaging was performed to investigate the steel fiber distribution inside the UHPC by visualizing the spatial distribution of steel fibers well. Finally, the tensile stress-strain curve for the proposed UHPC was proposed for the implementation to the structural analysis and design.

A Study on Fabrication of Ti Matrix Composites by Liquid Phase Diffusion Bonding (액상확산접합법을 이용한 Ti 금속기복합재료 제조에 관한 연구)

  • Kim, Gyeong-Mi;U, In-Su;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.210-220
    • /
    • 1996
  • The purpose of this study is to develop the processing techniques of Fiber Reinforced Metal by Liquid Phase Diffusion Bonding method with SiC fiber as a reinforcing material and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements in reaction and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements is reaction zone among CP Ti/Ti-15wt%Cu-20wt%Ni(TCN20)/SiC long fiber were investigated by Optical Microscope, SEM/EDX, EPMA, X-ray and AES. The results obtained in this study are as follows. 1) When Ti matrix composite materials are fabricated under the bonding condition of 1273Kx1200sec, the SiC long fiber was the most suitable reinforcing material for Ti matrix composite materials. 2) With SiC long fiber under same condition, a TiC layer(1.0-1.6$\mu\textrm{m}$) was observed on the surface of SiC long fiber. 3) Liquid Phase Diffusion Bonding has shown the feasibility of production of Ti matrix composite materials.

  • PDF

Development of Optical Fiber-based Daylighting System with Uniform Illumination

  • Ullah, Irfan;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.247-255
    • /
    • 2012
  • Daylighting has a very effective role in reducing power consumption and improving indoor environments in office buildings. Previously, it was not under consideration as a major source of renewable energy due to poor reliability in the design. Optical fiber as a transmission medium in the daylighting system demands uniform distribution of light to solve cost, heat, and efficiency issues. Therefore, this study focuses on the uniform distribution of sunlight through the fiber bundle and to the interior of the building. To this end, two efficient approaches for the fiber-based daylighting system are presented. The first approach consists of a parabolic mirror, and the second approach contains a Fresnel lens. Sunlight is captured, guided, and distributed through the concentrator, optical fibers, and lenses, respectively. At the capturing stage, uniform illumination solves the heat problem, which has critical importance in making the system cost-effective by introducing plastic optical fibers. The efficiency of the system is increased by collimated light, which helps to insert maximum light into the optical fibers. Furthermore, we find that the hybrid system of combining sunlight and light emitting diode light gives better illumination levels than that of traditional lighting systems. Simulation and experimental results have shown that the efficiency of the system is better than previous fiber-based daylighting systems.

섬유배향각 분포측정에 잇어서 교점계수법의 정밀도에 미치는 섬유종횡비와 면적비의 영향

  • 이상동;김혁;한길영;김이곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.659-663
    • /
    • 1995
  • The fiber oriented conditied inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to measure the fiber orientation angel for the determination of molding conditions, mechanical charactistics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine thr accuracy of intersection counting method. The fiber orientation function measured by intersection countingmethod using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the secant line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.