• Title/Summary/Keyword: Fiber curl

Search Result 19, Processing Time 0.441 seconds

Effects of Kneading Concentration on Characteristics of HwBKP Fibers (니딩 처리 시 지료농도에 따른 활엽수표백크라프트펄프의 섬유특성 변화)

  • Seo, Ji-Hye;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • In this study, effects of kneading concentration on characteristics of hardwood bleached kraft pulp (HwBKP) fibers were elucidated. A laboratory two-shaft kneader was utilized for kneading. Kneading concentration was varied in the range of 15-30% (w/w) and the number of kneading treatment was adjusted between 0 and 6 passes. It was found that kneading concentration influenced fiber characteristics. At 15% of pulp concentration, fiber length slightly increased with increasing the number of kneading passes, while other morphological properties such as fiber width and curl decreased: fiber straightening occurred. In addition, the increase in WRV and the decrease in CSF were the largest at 15% kneading concentration, meanings that fibrillation mainly occurred. In contrast, at higher kneading concentration exceeding 20%, fiber deformation like curl was mainly occurred. Also, at kneading concentration of 20% and 30%, fiber length decreased with the number of kneading passes while other morphological properties such as fiber width, and WRV increased. Severe fiber entanglement was found at 30% kneading, which shall be removed during papermaking.

Strength Property Improvement of OCC-based Paper by Chemical and Mechanical Treatments(I) (골판지 고지의 물리화학적 처리에 의한 강도 향상(제 1 보))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • To improve the physical properties of OCC (Old Corrugated Container) fibers, we used the mechanical pre-treatment on the fibers before refining . The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in changes of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the amount of mechanical treatment on the fibers by fiber curl index for convenience. Four different refining techniques were applied to the pre-treated fibers (valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pre-treatment and the refining methods. Conclusions were summarized as followed. 1. Mechanical pre-treatment in Hobart mixer for more than 1 hour caused the increase of curl index of OCC fibers, and increased breaking length, burst index, and tear index the handsheets more than 10 % in this experiment. 2. Kady mill and PFI mill refining were effective in keeping fiber length from shortening Kady mill and Valley beater refining straightened out the fiber curls, and reduced the curl index. 3. Valley beating reduced fiber length very fast and generated fines more than other refining methods. 4. To increase breaking length and burst strength while keeping tear strength , combination of mechanical pre-treatment and Valley beating were most effective.

  • PDF

Effects of Kneading Treatment on the Properties of Various Pulp Fibers (Kneading 처리가 다양한 펄프 섬유들의 특성에 미치는 영향)

  • Kim, Ah-Ram;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.47-54
    • /
    • 2015
  • In this study, effects of kneading treatment on the properties of hardwood bleached kraft pulp (HwBKP), softwood bleached kraft pulp (SwBKP) and hardwood bleached chemi-thermo-mechanical pulp (HwBCTMP) were elucidated with a laboratory two-shaft kneader. Kneading treatment was performed at 30% (w/w) of pulp concentration and the number of passes through the kneader was adjusted from 0 to 10 passes. Then, changes in properties of pulp fibers were evaluated. It was found that fiber characteristics were influenced by kneading treatment. Fiber length was decreased with kneading while other morphological properties such as fiber width, curl and kink became increased as the number of passes through the kneader increased from 0 to 5 passes. The magnitude of changes in the morphological properties of softwood chemical pulp was the largest, followed by hardwood chemical pulp. The morphological properties of HwBCTMP were little influenced by kneading treatment. Swelling of fiber measured by WRV was increased with kneading except of HwBCTMP.

Physcial and Fiber Properties of TMP and CTMP from Kenaf Cultivated at Reclaimed Land of Korea

  • Yoon, Seung-Lak;Kojima, Yasuo;Cho, Dong-Ha;Kim, Nam-Hum;Kim, Min-Joong;Lee, Myoung-Ku
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.373-379
    • /
    • 2006
  • Fiber characteristics and fiber distribution of thermomechanical pulp(TMP), bisulfite chemithermomechanical pulp(bisulfite CTMP), neutral sulfite chemithermomechanical pulp(neutral sulfite CTMP) from kenaf(Hibiscus cannabinus L., Malvaceae) cultivar Tainug-2 cultivated in the reclaimed land of Korea were examined to use effectively nonwood fibers as an alternative raw material sources for papermaking. Yields of TMP and CTMP from kenaf were lower than those of TMP from hardwoods and CTMP from softwoods and hardwoods. Bark fibers of kenaf cultivar Tainung-2 ranged 2.04 to 2.30 mm long and $18.7{\sim}19.7{\mu}m$ width. Core fibers averaged 0.63 to 0.80 mm long and $29.5{\sim}31.4{\mu}m$ wide. Coarseness of bark fiber was higher than that of core fiber, and fiber from TMP were higher than those from both bisulfite CTMP and neutral sulfite CTMP. Curl indexes of bark fibers were higher than those of core fibers. However curl indexes were not significantly affected by the pulping conditions. Short fiber distributions were higher in core fibers from TMP and CTMP and long fiber distributions were higher in bark fibers. There was no significant difference in fiber distribution of whole and core fibers obtained from TMP and CTMP, Fibers from neutral sulfite CTMP, however, exhibited a little higher long fiber distribution. Distinct difference in anatomical characteristics was found between core and bast fibers of kenaf plant. Parenchyma cell, pith parenchyma cell and vessel were observed in core fibers and bast fiber in bast sections.

  • PDF

Effect of Curling on the Characteristics of Pulp Fibers (컬화가 펄프 섬유의 특성에 미치는 영향)

  • 원종명;이재훈;한창석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • Recycling of wastepaper is very important for the environmental protection. However inferior strength and slower drainage characteristic that are brought by the hornification and the increase of fines respectively limited the increase of wastepaper recycling. The purpose of this study is to obtain some fundamental information that is helpful to develop the technologies which can improve the characteristics of recycled fibers. Softwood bleached kraft pulp was curlated with Hobart mixer at several different consistency. The curlation of fibers can cause the internal fibrillation and decreasing the crystallinity without serious damage of fiber surface. Curl index, kink index, freeness and WRV were increased, but crystallinity was decreased with the increase of curlation consistency.

  • PDF

Quantitative Analysis of Pulp Fiber Characteristics that Affect Paper Properties(I) (종이의 특성에 영향하는 펄프 섬유특성의 정량적 해석(I))

  • 이강진;박중문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Refining is one of the most important processes of fiber treatment that provides optical and physical properties of final paper products. The evaluation method of refining progress is usually freeness (CSF) or wetness (SR) test because of its rapidity and convenience. However, there are some deficiencies in using freeness or wetness test to evaluate pulp fibers accurately because its results are more influenced by fines contents than extent of fibers treatment. The objective of this study is to show the deficiency of wetness in evaluating the refining process. For this, beating is done by varying the beating load. Handsheets are made after beating until 25 and $32^{\circ}C$ SR, and then paper properties are measured. Refined fibers are analyzed by fiber length, fines contents, curl, kink, WRV, and zero-span tensile strength. The results show that longer beating time is required to reach the same wetness at lower beating load. There are differences in the average fiber length, distribution curve of fiber length, fines contents, curl, kink, WRV of long fiber fraction, drainage time, and zero-span tensile strength of rewetted sample at different beating load. At the low beating load in the same wetness, apparent density, breaking length, burst strength, and tear strength are higher, while opacity and air permeability are lower than those of the high beating load. Using Page s equation, which shows the relationship among tensile strength, intrinsic fiber strength, and interfiber bonding strength, interfiber bonding strength is calculated and analyzed to explain final paper properties. At $25^{\circ}C$ SR, interfiber bonding strength is only slightly higher at 2.5kgf beating load, while the intrinsic fiber strength is substantially higher. At $32^{\circ}C$ SR, intrinsic fiber strength is a little bit higher at 2.5kgf beating load, and interfiber bonding strength is remarkably higher than those of 5.6kgf beating load. These results can be used to explain the different properties of the final paper at selected beating loads.

  • PDF

An Alternative Fiber Processing Method

  • Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.34-42
    • /
    • 2011
  • A fiber processing method, which might be an alternative for conventional refining process, was introduced. The method consists of repetitive, gentle, mechanical impacts on fibers, followed by fiber uncurling process. This method was very effective for OCC and BCTMP for increasing WRVs (water retention value) while keeping fiber lengths from shortening. For OCC and BCTMP, gentle mechanical impacts on fibers using Hobart mixer increased breaking lengths and tear strengths simultaneously at fast drainage level, and straightening fibers using kady mill increased those strength properties further. For SwBKP and HwBKP, only mechanical impacts using the Hobart mixer were effective on increasing tensile and tear strength at fast drainage, but there were no further increase by kady mill treatment. The strength increases of BCTMP by this alternative fiber processing method were exceptionally high. An extensive engineering development should be followed to actualize this fiber processing mechanism in an energy-effect way.

Paper Strength Mechanism Depending on Mixing Ratio of Softwood and Hardwood Fibers (침엽수, 활엽수 펄프섬유의 혼합비에 따른 종이의 강도발현 기작 구명)

  • 이진호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Paper consists of fiber network and paper properties were highly affected by fiber characteristics. Many researchers have tried to relate fiber and paper properties. Softwood and hardwood fiber's are quite different in their properties. Generally, softwood fiber's are longer and more flexible than hardwood fibers. At present, many paper mills make mixed paper with softwood and hardwood fibers except for special grade. During fracture some fiber's are broken and others are pulled out. In this paper, the number of broken and pulled out fiber's during fracture is analyzed depending on the mixing ratio of softwood and hardwood fiber's. Fiber length, curl, kink, coarseness, WRV and formation index were measured. Double-edged strength samples were prepared to observe the number of broken and pulled out fiber's. Mixed paper strength was decreased with increasing hardwood fibers ratio. During fracture, softwood fiber's were more likely broken and hardwood fibers were more likely pulled out. The strength of paper which consists of softwood fibers was determined by fiber's broken strength and that of hardwood fibers by fiber's debonding strength. Paper strength was changed depending on the fiber's bonding capability. If the fiber is longer and more flexible, the fiber network becomes stronger and stiffer.

  • PDF

Studies on Pulping of Sponge Gourd Net Fiber - Analysis of Morphology and Characteristics of Pulps - (수세미외 섬유의 펄프화에 관한 연구-섬유의 구조와 펄프화별 특징 분석-)

  • Kim, Jong-Gyu;Rho, Jae-Seong;Lee, Jong-Shin
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1014-1021
    • /
    • 1997
  • Studies were carried out on the preparation of several kinds of pulps from Sponge gourd fiber by KP, ASP, SP PAP, AP and addition of AQ pulping process. These unbeaten and beaten pulping fibers were observed their characteristics and fiber structure by SEM, FQA, Image analyzer and Micro projector. The results were summarized as follows; 1) The cooking condition which is the possible defibrilation of Shives are KP base($160^{\circ}C$, 2hr.), ASP base($155^{\circ}C$, 4hr.), PAP base($160^{\circ}C$, 1hr.). From the results, the kappa no. had the range of 12, 25, 10 each other. 2) The pulp yields of sponge gourd fiber obtained the range of KP 50~55%, ASP&60~70% and PAP 45~50%. SP base have the highest and contnets of KP&PAP base are much the same as woods. 3) Increasing amount of NaOH on Pulping was accelerated the defibrilation of Shives and was changed a morphology of pulping fiber quality such as fiber length, curl and kink index. 4) Addition of AQ on pulping process of sponge gourd fiber had a affect to raise the rate of delignification while protecting cellullosic components against degradation, especially defibrilation was very excellent, beated pulp much more easily and increased the fibrilation. 5) ASP system have higher bulk density, fiber bonding and protecting cellullosic components against degradation than KP or PAP. 6) The color reactions of the "C" stain solution showed blue or blue-gray with clean and transparency thin cell wall.

  • PDF