• Title/Summary/Keyword: Fiber architecture

Search Result 461, Processing Time 0.026 seconds

Conceptual Design of Deep-sea Multi-Point Mooring by using Two-Point Mooring (2점지지계류를 활용한 심해 부유체의 다점지지계류 개념설계)

  • Park, In-Kyu;Kim, Kyong-Moo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.462-467
    • /
    • 2008
  • In this paper, we investigated the design method of mooring system in ultra deep sea and carried out the conceptual design for offshore West Africa oil field in ultra deep sea of 3000 meters. Recently, it was feasible to design and install the offshore floating structures in deep sea of up to 2000 meters. Due to the simplicity, two-point mooring design is fully utilized. Force-excursion curves are throughly examined to find out the feasibility of various combinations of mooring lines. Free length and pretension effects are discussed. It is found that composite materials including synthetic fiber rope may be good solution for ultra deep sea mooring design.

Properties of Cement Composite Using Selvedge of High Performance Fabric (고성능 원단의 셀비지를 활용한 시멘트 복합재료의 특성)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Yun Yong;Kim, YoungMin;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • The purpose of this study is to investigate experimentally the compressive strength and tensile behavior of cement composites reinforced by selvedge short fiber from high performance fabric. Four types of mixtures according to the types of selvedge short fibers were prepared and compressive strength and tension tests were performed. Test results showed that the compressive strength values of composites investigated in this study ranged from 64 MPa to 66 MPa and all composites showed strain-hardening behavior. The tensile strain capacity values of composites ranged from 2.6 % to 2.8 % and multiple cracking behavior was observed in all composites.

Torsional Strength of CFRP Material for Application of Ship Shaft System (CFRP 소재의 선박용 축계 적용을 위한 비틀림강도 특성)

  • Kim, Min-kyu;Shin, Ick-gy;Kim, Seon Jin;Park, Dae Kyeom;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.431-439
    • /
    • 2021
  • The Carbon Fiber Reinforced Plastic (CFRP) material is recently widely used in the composite industry with excellent rigidity and lightweight properties. A ship shaft system requires high standards of safety on torsional strength capacity. The purpose of this study is to verify the applicability of a CFRP shaft system to take the place of metal shaft systems for ships from a viewpoint of torsional strength. Selection of materials and manufacturing method are executed then two geometrically scaled CFRP shaft system models were designed and manufactured with three-layer patterns. The models were used for a series of torsion tests under single and repeated torsional loading conditions. Detailed design and manufacturing methods for a CFRP ship shaft system are documented and the torsion test results are listed in this paper. The results of this study could be useful guidelines on the development of CFRP ship shaft systems and a test method.

Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements (아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구)

  • Lee, Gayoon;Lee, Dong-Young;Park, Minsoo;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

4D full-field measurements over the entire loading history: Evaluation of different temporal interpolations

  • Ana Vrgoc;Viktor Kosin;Clement Jailin;Benjamin Smaniotto;Zvonimir Tomicevic;Francois Hild
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.503-517
    • /
    • 2023
  • Standard Digital Volume Correlation (DVC) approaches are based on pattern matching between two reconstructed volumes acquired at different stages. Such frameworks are limited by the number of scans (due to acquisition duration), and time-dependent phenomena can generally not be captured. Projection-based Digital Volume Correlation (P-DVC) measures displacement fields from series of 2D radiographs acquired at different angles and loadings, thus resulting in richer temporal sampling (compared to standard DVC). The sought displacement field is decomposed over a basis of separated variables, namely, temporal and spatial modes. This study utilizes an alternative route in which spatial modes are con-structed via scan-wise DVC, and thus only the temporal amplitudes are sought via P-DVC. This meth-od is applied to a glass fiber mat reinforced polymer specimen containing a machined notch, subjected to in-situ cyclic tension, and imaged via X-Ray Computed Tomography. Different temporal interpolations are exploited. It is shown that utilizing only one DVC displacement field (as spatial mode) was sufficient to properly capture the complex kinematics up to specimen failure.

Experimental Study on Seismic Retrofitting Methods for School Building using Aramid Strip (아라미드 스트립을 이용한 학교건축물의 내진성능 보강방안에 관한 실험적 연구)

  • Kim, Hye-Jin;Park, Tae-Won;Cho, Seung-Ho;Lee, Kyung-Koo;Roh, Young-Sook;Chung, Lan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.100-106
    • /
    • 2010
  • Most of the school buildings were built before the seismic code was established. To consider the sunlight and ventilation to the partition walls are built about 1m height beside columns at typical school buildings. For the reason, columns which is consisted school building occur brittle failure shape by the reduced effective depth. In this study, experimental test for retrofitting effect by Aramid Fiber Reinforced Polymers(AFRP) strips on masonry infilled reinforced concrete(RC) frames is performed. The test results were to ensured enough time to evacuate due to the enhancement of ductility and strength of school buildings to withstand earthquakes using AFRP strips.

Tandem Architecture for Photonic Packet Switches

  • Casoni, Maurizio;Raffaelli, Carla
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.145-152
    • /
    • 1999
  • A new switch architecture is presented to enhance out-put queuing in photonic packet switches. Its appkication is for a packet switching enviroment based on the optical transport of fixed length packets. This architecture consists of a couple of cas-cading switching elements with output queuing, whose buffer ca-pacity is limited by photonic technology. The introduction of a suitable buffer management allows a very good and balanced ex-ploitation of the available optical memories, realized with fiber de-lay lines. In particular, packet loss performance is here evaluated showing the improvement with respect to the single switch and a way to design large optical switches is shown in order to meet broadband network requirements.

  • PDF

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

Hull Form Optimization of a Small Trimar:an by Model Testing

  • Oh Se-Myun;Lee Seung-Hee;Lee Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.14-22
    • /
    • 2005
  • A 12 m long G/T 4.99 Class Trimaran is now under development at the Center for Transportation System of the Yellow Sea (CTYS) before deployed as a pleasure fishing boat along the west coast of Korean peninsula. The boats will be made of fiber reinforced plastics and equipped with a 360 hp diesel engine and a water jet propulsion system to propel the ship to reach maximum speed of 25knots after fully loaded. Model tests for hull form development of the Trimaran have been done at the towing tank of the Inha University. The influence of the spacing between main hull and outriggers and the longitudinal location of the outriggers have been carefully examined to find the optimal size and locations of the outriggers to improve both the resistance characteristics, and the results are reported in the present paper.

Numerical Analysis of Orthotropic Composite Propellers (직교이방성 복합소재 프로펠러 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Ruy, Won-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.377-386
    • /
    • 2019
  • Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.