• 제목/요약/키워드: Fiber angle

검색결과 678건 처리시간 0.034초

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • 제26권1호
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

플라즈마 표면처리 기법에 의한 무기절연물의 젖음성 변화에 관한 연구 (A Study on the Wettability of Inorganic Insulator due to Plasma Surface Treatment Technique)

  • 황영한;엄무수;박홍태;이규철;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1292-1294
    • /
    • 1994
  • With the contact angle of phase epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interface between epoxy resin and glass plate as simple model of a glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with surface treatment conditions. The contact angle significantly depends on plasma treating time and environment temperature of the oven.

  • PDF

편광측정법에 의한 광섬유 전류 센서 제작에 관한 연구 (A Study on the Fabrication of Polarimetric Fiber Optic Current Sensor)

  • 장남영;최평석;은재정;박해수
    • 대한전자공학회논문지SD
    • /
    • 제41권6호
    • /
    • pp.33-41
    • /
    • 2004
  • 본 논문에서는, 편광측정법에 의한 광섬유 전류 센서(P-FOCS)를 실험·제작하여, 실제 필드에 적용할 수 있는 P-FOCS의 상용화 가능성에 대하여 연구하였다. P-FOCS는 인가된 전류에 의해 발생한 자기장에 비례하는 Faraday 회전각을 측정함으로서 인가된 전류를 측정한다. P-FOCS의 센싱 광섬유로는 저복굴절 광섬유를 사용하여 밴딩에 의한 선복굴절의 영향을 최소화하였으며, 벌크(bulk)한 광학소자의 사용으로 인한 광 손실을 막기 위해 전 광섬유 소자를 사용하였다. 또한, 구성된 신호처리회로는 광섬유 소자들의 연결부에서의 손실로 인한 출력 신호의 강도 변화를 제거하기 위해 사용된다. Faraday 회전각은, 632.8nm 파장의 광원을 이용하여 권선수가 약 1500인 솔레노이드에 전류를 인가해 7500A의 전류원의 효과를 얻도록 하여, 솔레노이드 내부에 센싱 광섬유를 통과시켜 측정하였다. $1000A{\sim}7500A$ 범위에서, 선형성의 측정 오차는 약 1.5% 이내였다.

비선형 거동을 고려한 척추 인공추간판 보철물의 최적설계 (Optimal Design of Synthetic Intervertebral Disc Prosthesis Considering Nonlinear Mechanical Behavior)

  • 권상영;김형태;하성규
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.234-242
    • /
    • 2002
  • A shape optimal design of synthetic intervertebral disc prosthesis is performed using a three-dimensional finite element method. Geometric parameters are introduced to model the cross-sectional geometry of the intervertebral disc. It is assumed that the total strain energy in the intact intervertebral disc is minimized under the normal load conditions, as often cited in other references. To calculate the stain energy density, both the nonlinear material properties and the large deformations are taken into account. The design variables of the annulus fiber angle and the area ratio of the nucleus pulposus are calculated as 31°and 30%, respectively, which complies well with the intact disc. Thus, the same optimization procedure is applied to the design of the synthetic intervertebral disc prosthesis whose material properties are different from the intact disc. For the given synthetic material properties, the values of 67°and 24% for the fiber angle and the area ratio are obtained.

KSR-III 삼단 복합재 연소관의 구조 해석 및 변형률 측정 (Structural Analysis and Strain Monitoring of the Filament Wound Composite Motor Case used in KSR-III Rocket)

  • 박재성;김철웅;조인현;오승협;홍창선;김천곤
    • Composites Research
    • /
    • 제14권6호
    • /
    • pp.24-31
    • /
    • 2001
  • 필라멘트 와인딩 연소관의 제작에 있어서 라이너 표면의 형상과 와인딩되는 섬유각도는 제작 공정상의 편의와 제작 후 구조물의 성능에 큰 영향을 미친다. 본 연구에서는 두 개의 반구를 합친 험상의 라이너 위에 와인딩된 로켓 연소관의 유한 요소 해석을 수행하였다. 32개의 스트레인 게이지를 표면에 부탁한 후 수압실험을 실시하여 유만 요소 해석 과정을 검증하였고, 웨이퍼(wafer)를 통한 국부적 보강 방법에 대한 해석을 수행하였다. 파손에 따른 재료의 비선형 거동을 고려한 점진적 파손 해석을 통해 연소관의 과열 압력과 취약부위에 대한 연구를 수행하였다.

  • PDF

사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동 (Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior)

  • 박철우
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.

Effects of Oxygen Plasma Treatment on the Wettability of Polypropylene Fabrics

  • Kwon, Young Ah
    • 한국의류산업학회지
    • /
    • 제16권3호
    • /
    • pp.456-461
    • /
    • 2014
  • The objective of this study is to give PP(polypropylene) fabric a good affinity for water. Oxygen plasma was treated to PP fabrics in a commercial glow discharge reactor with different RF power, discharge pressure, and reaction time. The PP fiber surfaces were characterized by the measurement of contact angle and ESCA. A JEOL scanning electron microscope was used to observe the surface morphology of fibers. The spontaneous water uptake amount of PP fabrics was determined by the demand wettability test. To determine the effect of aging on the surface properties of $O_2$ plasma treated PP, all the above measurements of the samples were carried out after 1, 7, 30, 60, and 150 days. The results are as follows. The PP fiber surfaces treated by $O_2$ plasma treatment have a chemical composition that consisted of various oxygen containing polar groups. Consequently, the contact angles of the treated PP fibers decreased, which improved the water uptake rate of PP fabrics. Surface roughness of the treated PP affected the fabric wettabiity as well. Wettability of the treated PP decreased and leveled off with aging. The $O_2$ plasma treatment is a simple and effective method to increase the water uptake rate of PP fabrics.

평직 탄소섬유의 플라즈마 처리 및 이에 따른 탄소섬유/에폭시 복합재의 마모 특성 (Effect of Plasma Modification of Woven type Carbon Fibers on the Wear Behavior of Carbon Fiber/Epoxy Composites)

  • 이재석;이경엽
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.113-118
    • /
    • 2010
  • For a present study, woven type carbon fibers were surface-modified by oxygen plasma to improve adhesive strength between carbon fibers and epoxy. The change of hydrophilic properties by the plasma modification was investigated through the contact angle measurement and the calculation of surface energy of carbon fiber due to the oxygen plasma modification. FESEM and XPS analyses were performed to study the chemical and physical changes on the surface of carbon fibers due to the oxygen plasma modification. Pin-on-disk wear tests were conducted under dry condition using unmodified and plasma-modified carbon/epoxy composites to investigate the effect of plasma modification on the wear behavior of woven type carbon/epoxy composites. The results showed that the friction coefficient and the wear rate of plasma-modified carbon/epoxy composites were lower than those of unmodified carbon/epoxy composites, respectively. XPS analysis showed that new functional group of a carbonyl type was created on the carbon fibers by the $O_2$ plasma treatment, which enhanced adhesive strength between carbon fibers and epoxy, leading to improve wear properties

사회기반시설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-I 인장 거동 (Characterization of Metal-FRP Laminated Composites for Strengthening of Structures: Part-I Tensile Behavior)

  • 박철우
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.54-63
    • /
    • 2011
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the tensile test with various experimental variables including the number, the angle and the combination of FRP laminates. From the test results, both aluminum and steel-FRP laminate composite material showed increased fracture toughness. However, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions. In general, steel-FRP laminate composite showed better tensile performance in regards to the seismic retrofit purposes.

전기절연물용 GFRP의 winding 각도에 따른 굽힘강도 (Bending strength of GFRP for Insulator according to Winding Angle)

  • 박효열;강동필;안명상;이태주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.429-432
    • /
    • 2004
  • The demand for electric power keeps growing, and tends to be more effective. Polymer insulators have been manufactured for almost twenty years and the excellent insulation performance of polymer insulators is attractive. Polymeric materials are now widely used as a replacement for inorganic materials such as porcelain or glass for the outdoor insulation of high voltage insulation. GFRP has been used widely as a core materials for polymer insulators. This paper reports the mechanical properties of GFRP for insulators. The bending strength was simulated and evaluated according to the winding angle. The fiber orientation in GFRP has a great effect on the strength of GFRP because the strength of GFRP mainly depends on the strength of fiber. Results of simulated and evaluated strength of GFRP were compared each other. The simulated strength of GFRP rod was different from the evaluated strength. It was caused that the shear stress had a great effect on the strength of GFRP although the stress of parallel direction of GFRP was much higher.

  • PDF