• Title/Summary/Keyword: Fiber angle

Search Result 678, Processing Time 0.025 seconds

Focal Muscle Vibration Changes the Architecture of the Medial Gastrocnemius Muscle in Persons With Limited Ankle Dorsiflexion

  • Moon, Il-Young;Lim, Jin-Seok;Park, Il-Woo;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 2022
  • Background: The gastrocnemius tightness can easily occur. Gastrocnemius tightness results in gait disturbance. Thus, various interventions have been used to release a tight gastrocnemius muscle and improve gait performance. Moreover, focal muscle vibration (FMV) has recently been extensively researched in terms of tight muscle release and muscle performance. However, no study has investigated the effects of FMV application on medial gastrocnemius architectural changes. Objects: In this study, we aimed to investigate the effects of FMV on medial gastrocnemius architecture in persons with limited ankle dorsiflexion. Methods: Thirty one persons with <10° of passive ankle dorsiflexion participated in this study. We excluded persons with acute ankle injury within six months prior to study onset, a history of ankle fracture, leg length discrepancy greater than 2 cm, no history of neurological dysfunction, or trauma affecting the lower limb. The specifications of the FMV motor were as follows: a fixed frequency (fast wave: 150 Hz) and low amplitude (0.3-0.5 mm peak to peak) of vibration; the motor was used to release the medial gastrocnemius for 15 minutes. Each participant completed three trials for 10 days; a 30-second rest period was provided between each trial. Medial gastrocnemius architectural parameters [muscle thickness (MT), fiber bundle length (FBL), and pennation angle (PA)] were measured via ultrasonography. Results: MT significantly decreased after FMV application (p < 0.05). FBL significantly increased from its baseline value after FMV application (p < 0.05). PA significantly decreased from its baseline value after FMV application (p < 0.05). Conclusion: FMV application may be advantageous in reducing medial gastrocnemius excitability following a decrease in the amount of contractile tissue. Furthermore, FMV application can be used as a stretching method to alter medial gastrocnemius architecture.

The evaluation for the usability ofthe Varian Standard Couch modelingusing Treatment Planning System (치료계획 시스템을 이용한 Varian Standard Couch 모델링의 유용성 평가)

  • Yang, yong mo;Song, yong min;Kim, jin man;Choi, ji min;Choi, byeung gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2016
  • Purpose : When a radiation treatment, there is an attenuation by Carbon Fiber Couch. In this study, we tried to evaluate the usability of the Varian Standard Couch(VSC) by modeling with Treatment Planning System (TPS) Materials and Methods : VSC was scanned by CBCT(Cone Beam Computed Tomography) of the Linac(Clinac IX, VARIAN, USA), following the three conditions of VSC, Side Rail OutGrid(SROG), Side Rail InGrid(SRIG), Side Rail In OutSpine Down Bar(SRIOS). After scan, the data was transferred to TPS and modeled by contouring Side Rail, Side Bar Upper, Side Bar Lower, Spine Down Bar automatically. We scanned the Cheese Phantom(Middelton, USA) using Computed Tomography(Light Speed RT 16, GE, USA) and transfer the data to TPS, and apply VSC modeled previously with TPS to it. Dose was measured at the isocenter of Ion Chamber(A1SL, Standard imaging, USA) in Cheese Phantom using 4 and 10 MV radiation for every $5^{\circ}$ gantry angle in a different filed size($3{\times}3cm^2$, $10{\times}10cm^2$) without any change of MU(=100), and then we compared the calculated dose and measured dose. Also we included dose at the $127^{\circ}$ in SRIG to compare the attenuation by Side Bar Upper. Results : The density of VSC by CBCT in TPS was $0.9g/cm^3$, and in the case of Spine Down Bar, it was $0.7g/cm^3$. The radiation was attenuated by 17.49%, 16.49%, 8.54%, and 7.59% at the Side Rail, Side Bar Upper, Side Bar Lower, and Spine Down Bar. For the accuracy of modeling, calculated dose and measured dose were compared. The average error was 1.13% and the maximum error was 1.98% at the $170^{\circ}beam$ crossing the Spine Down Bar. Conclusion : To evaluate the usability for the VSC modeled by TPS, the maximum error was 1.98% as a result of compassion between calculated dose and measured dose. We found out that VSC modeling helped expect the dose, so we think that it will be helpful for the more accurate treatment.

  • PDF

A study on the sleeve-shaped platform of POF-based joint angle sensor for arm movement-monitoring clothing (인체동작 모니터링 위한 광섬유 기반 의류 소매형 동작센서 연구)

  • Kang, Da-Hye;Lee, Young-Jae;Lee, Jeong-Whan;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.221-226
    • /
    • 2011
  • Although diverse researches on sensing method of human movement have been performed, there are still many limitations to the existing methods. As a part of supplementing the limitations to the existing motion sensing methods, this study aimed to execute an exploratory examination on a POF-based sleeve-shaped motion sensor for less restrictive sensing of human movement. In this study, a set of POF-based motion sensor, which was embedded in a sleeve-shaped platform was devised, and a set of exploratory experiments was performed on the possibility of sensing of human movement as diverse as in daily life, through this device. The scope of this research was limited to an exploration on the possibility and basic elements of POF-based sleeve-shaped motion sensor, while the influence of sleeve patterns, those of wearer's somatotype, those of sewing method were not studied in this study. When compared to the pre-existing methods, the POF-based motion sensor platformed on sleeve in this study, which was purposively devised to be applied to the motion sensing clothing shows some beneficial characteristics : more sensitive measurement on human motion, low cost, no timely restriction in sensing, no request for gigantic apparatus and space for sensing.

  • PDF

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Pushover Analysis of a Five-Story Steel Framed Structure Considering Beam-to-Column Connection (보-기둥 접합부를 고려한 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effect of the beam-column connection on the structural behavior. The connections were designed as a fully rigid connection and as a semirigid connection. A fiber model was utilized to describe the moment-curvature relationship of the steel beam and column, and a three-parameter power model was adopted for the moment-rotation angle of the semirigid connection. To evaluate the effects of higher modes on structural behavior, the structure was subjected to a KBC2005-equivalent lateral load and lateral loads considering higher modes. The structure was idealized as a separate 2D frame and as a connected 2D frame. The pushover analysis of 2D frames for the lateral load yielded the top displacement-base shear force, design coefficients such as overstrength factor, ductility ratio, and response modification coefficient, demanded ductility ratio for the semirigid connection,and distribution of plastic hinges. The sample structure showed a greater response modification coefficient than KBC2005, the higher modes were found to have few effects on the coefficient, and the lateral load of KBC2005 was found to be conservative. The TSD connection was estimated to secure economy and safety in the sample structure.

Studies on the Improvements for GAYAKUM Sounding Boards (가야금(伽倻琴) 향판재(響板材)의 개선(改善)에 관(關)한 연구(硏究))

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.65-78
    • /
    • 1990
  • For the purpose of Improving the sounding boards for the conventional GAYAKUM, I was making approximately 202 specimens of radial board, 371 specimens of tangential board by cutting along the grain and the part of stem and 31 specimens of the disjointed traditional GAYAKUM made in Paulownia coreana. And it was conducted to measure specific gravity, dynamic Young's modulus, internal friction, resonant frequency, velosity of sound and width of annual ring by the method of the frexural vibration in a free-free bar in the audio frequency range. And it confirmed the juvenile wood by measuring wood fiber length of specimens. It was also conducted to investigate dynamic properties and moisture absorption by various heat-treatment and to test dynamic Young's modulus and internal friction for the disjointed conventional GAYAKUM. The results obtained were summarized as follow: 1. The Juvenile wood is located within about 7 annual rings from the pith in Paulownia coreana. 2. As increased with the specific gravity, the dynamic Young's modulus had more and more increased, but the internal friction had slightly decreased. 3. I think that radial board would be good for sounding board wood. because radial board is higher than tangential board in dynamic Young's mudulus and internal friction is lower than tangential board. 4. The value of mean dynamic Young's modulus on the conventional GAYAKUM, radial board and tangential board of 604 samples is $0.4283\pm0.037(\times10^{11}dyne/cm^2)$, $0.4316\pm(\times10^{11}dyne/cm^2)$ and $0.4234\pm0.112(\times10^{11}dyne/cm^2)$ respectively. The value of the radial board showed little higher than that of conventional GAYAKUM, but It had a similar tendency between conventional GAYAKUM and tangential board. 5. The annual ring width by four aspect is more narrow in north and west than that of others. 6. The values of specific gravity and dynamic Young's modulus in the mature wood showed higher than those of juvenile wood. 7. As the grain angle in the butt wood more increased to bark from pith, the dynamic Young's modulus were low. Then it was not good for sounding board. 8. It appeared that the heat-treatment for sounding board wood had a more effect to do the treatment of hotiron on surface after heat-treatment during 24 hours in $60^{\circ}C$ temperature. 9. As increased with the temperature, the rate of moisture absorption of heat-treatment wood had decreased. In conclusion, I thought that the sounding board wood for GAYAKUM would had the most effect to do the treatment of hotiron on surface after heat-treatment during 24 hours in $60^{\circ}C$ temperature using the radial board of mature wood.

  • PDF

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

A Study on the Preparation of Durable Softening Water-repellenting Agent by Blending Acrylic Copolymer and Fatty Carbamide - I. Water-repellent Finish of Cotton Fabrics - (아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구 - I. 면직물에의 발수가공 -)

  • Kim, Young-Keun;Lee, Chong-Min;Park, Eun-Kyung;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.345-356
    • /
    • 1994
  • Each of the three cationized compounds synthesized previously, poly(OMA-co-DAMA)[PODC], poly(DMA-co-DAMA)[PDDC] and poly(EMA-co-DAMA)[PEDC] was blended with waxes, emulsifiers and cationized fatty carbamide(ODTCC) synthesized in this study for the preparation of some durable softening water-repellenting agents, PODCW, PDDCW and PEDCW. The results of washability, tearing strength, crease recovery and contact angle of the cotton fabrics treated with PODCW, PDDCW and PEDCW with and without textile finishing resin, showed remarkable improvement of the physical properties. Rating of water repellency of cotton fabric treated with PODCW was 80, but those treated with PDDCW and PEDCW were not high enough to use in industry. Proper curing temperature of the synthesized water-repelleting agents was $140^{\circ}C$; proper using concentration was 3wt%; sodium acetate was the best catalyst for water-repellenting agents among the used, and proper concentration was 0.6wt%. From the results of reaction mechanism of cellulosic fiber with water-repellenting agent and washability of the fibers treated with water-repellenting agents the prepared water-repellenting agent proved to be durable. Surface structures of cotton fabrics treated with water-repellenting agent were investigated by SEM.

  • PDF