• Title/Summary/Keyword: Fiber Ratio

Search Result 2,426, Processing Time 0.033 seconds

Acoustic Emission Measurement on the Composite Material (CFRP) (복합재료 시험편에서의 AE 발생 특성에 관한 연구)

  • 최만용
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.21-27
    • /
    • 1991
  • Acoustic Emission was monitored during tensile test and loading-holding-unloa-ding cycle test for two types (notched and unnotched) of CFRP specimens. AE activities showed that the fiber breakage during tensile tests depended upon the specimen geometry. We obtained new AE parameter such as the ration (damage ratio= AE events during unloading test / AE events during loading test) and the felicity ratio from which we investigated dynamic fracture process of CFRP specimens. The damage ratio of AE events was shown to be a good indicator to distinguish the generated fracture mechanism, such as fiber breakage and delamination. Also, ultrasonic testing results after loading-holding-unloading cycle test were good agreement with AE test results to detect defects or fiber breakage.

  • PDF

Mechanical Properties of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 역학적 특성)

  • 김기락;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF

An Experimental Study on the Flexural Strength of Fiber Reinforced Concrete Structures

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.26-28
    • /
    • 2012
  • In this thesis, fracture tests were carried out in order to investigate the flexural strength behavior of FRC(fiber reinforced concrete) structures. FRC beams were used in the tests, the initial crack load and the ultimate load of the beams were observed under the static loading. According to the results, the ultimate loads increase with the fiber content, and these tendency is clear in the specimens with large fiber aspect ratio. From the results of the regression analysis, practical formulae for predicting the flexural strength of FRC were suggested.

An Experimental Study on the Mechanical Study and Durability of PFRC(Polypropylene Fiber Reinforced Concrete) (폴리프로필렌 섬유보강 콘크리트(PFRC)의 역학적 특성 및 내구성에 관한 실험적 연구)

  • 박승범;이봉춘;권혁준;윤준석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.293-298
    • /
    • 1998
  • The result of an experimental study on the mechanical properties and durability of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as strength, toughness and durability. The test variables are fiber content, fiber types, W/C ratio. PFRC shows the highest strength when the polypropylene fiber contents were increased to 2.0 vol.%. Also, freeze-thaw resistance and carbonation were somewhat more improved than plain concrete.

  • PDF

Crack Behavior of Steel Fiber Reinforced Concrete (강섬유 철근콘크리트의 균열특성)

  • 강보순;황성춘;심형섭
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.336-343
    • /
    • 2000
  • Crack behavior of steel fiber concrete(SFC) and reinforced steel fiber concrete(RSFC) specimens has been experimentally and analytical investigated. Clack behavior of RSFC beams influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strenth of concrete. It can be observed from experimental result that addition of steel fiber to concrete specimen reduce crack width and increases stiffness, and thus enhances the behavior in serviceability limit states also high cyclic loading

  • PDF

Effects of different dietary ratio of physically effective neutral detergent fiber and metabolizable glucose on rumen fermentation, blood metabolites and growth performance of 8 to 10-month-old heifers

  • Sun, Jie;Xu, Jinhao;Shen, Yizhao;Wang, Mengzhi;Yu, Lihuai;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1230-1237
    • /
    • 2018
  • Objective: The present study was undertaken to determine an optimal balance between the amount of physically effective neutral detergent fiber (peNDF) to metabolizable glucose (MG) on rumen fermentation, blood metabolites and growth performance of 8 to 10-month-old heifers. Methods: A total of 15 healthy Holstein heifers weighing an average of 256 kg (8 month of age) were randomly assigned to three groups of five. Treatment diets consisted of the following three $peNDF_{8.0}/MG$ levels: 1.46 (Treatment A), 1.74 (Treatment B), and 2.08 (Treatment C). Results: The results showed that the ratio of $peNDF_{8.0}/MG$ affected rumen fermentation, blood metabolites and growth performance of heifers. The average daily gain of heifers tended to decrease as the ratio of $peNDF_{8.0}/MG$ increased (p = 0.07). The concentrations of blood urea nitrogen, triglyceride, and cholesterol increased significantly (p<0.05), while the high-density lipoprotein concentration decreased (p<0.05). After feeding 2 h and 4 h, insulin concentration in Treatment A was greater than Treatment C (p<0.05). Propionate concentration had decreasing trend (p = 0.07); acetate to propionate ratio and non-glucogenic to glucogenic volatile fatty acid (NGR) increased significantly (p<0.05). In addition, the digestibility of dry matter, crude protein, neutral detergent fiber, and acid detergent fiber decreased significantly (p<0.05). Conclusion: The present investigation indicated that dietary $peNDF_{8.0}/MG$ ratio can affect the growth and development, blood metabolites, rumen fermentation and apparent digestibility of heifers, and the optimal dietary $peNDF_{8.0}/MG$ ratio for 8 to 10-month-old heifers in the present study was 1.46.

The Study on the Gragting Rate MAA onto Silk Fiber by Redox System (Redox계에 의한 MAA Gragt 속도에 관한 연구)

  • 배도규;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.62-66
    • /
    • 1997
  • The MAA graftings in silk fiber were done by redox system for the purpose of investingating the effect of ferrous sulfate additive on the grafting rate and graft ratio in various conditions. The graft ratio was higher in redox graft system than in peroxide graft system and the graft ratio in redox graft system was also higher depending on decrease of ferrous sulfate additive. The saturation graft ratio obtained by empirical equation, log X=K/t, was increasing depending on the increase of ferrous sulfate additive. Initial grafting rate was increased but the latter grafting rate was decreased in redox graft system. The effects of liquor ratio(L.R.) on the graft ratio in redox graft system, were higher in high L.R. than in low L.R..

  • PDF

Flexural Toughness and Fatigue Behavior of Steel Fiber Reinforced Rapid-set Cement Concrete (강섬유보강 초속경시멘트 콘크리트의 휨인성 및 피로거동)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.163-172
    • /
    • 1999
  • This study is conducted on the flexural toughness and flexural fatigue test to fine the mechanical properties of steel fiber reinforced rapid-set cement concrete. Experimental investigation is examined according to fiber contents(0, 0.4, 0.7, 1.0, 1.5%), fiber aspect ratio(58, 60, 83), fiber type (hooked, crimped fiber), and cement type (normal portland & rapid-set cement). The principal results obtained through this study are as follows; toughness and fatigue resistance tend to considerably increase with fiber contents, fiber aspect ration. And hooked fiber is improved better than crimped fiber. Concrete using rapid set cement is increased strength properties compared with concrete using normal portland cement, but relative strength properties behavior and fatigue resistance show a tendency to decrease a little.

  • PDF

Evaluation of Crack Control Performance of the Concrete with Fiber Combination (섬유혼입 조건에 따른 콘크리트의 균열제어 성능 평가)

  • Park, Jae-Yong;Lee, Myoung-Ho;Kang, Byung-Hoi;Kim, Kyoung-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.21-22
    • /
    • 2013
  • Nowadays, the fiber which mixed with concrete matrix always has low adhesion with cement paste. It's difficult to use fiber to reinforce the structure. For more adding fiber in concrete would cause some problems as the low flowability and surface polishing. Further study is needed in fiber using. In this research, further study in fiber reinforced concrete has been invested. Various fibers with different properties have been used to prevent cracking. Fiber reinforced concrete's fundamental properties as slump, air content, compressive strength and tensile strength have been tested. Optimum type of the fiber and optimum addition ratio of fiber has been invested to increase the utility of the fiber which used in concrete.

  • PDF

Evaluation of flexural performance of high performance fiber reinforced cementitious composites according to fiber shape, aspect ratio and volume fraction (강섬유의 형상, 길이 및 혼입율에 따른 고성능 섬유보강 시멘트 복합체의 휨 특성 평가)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.697-704
    • /
    • 2017
  • High-Performance Fiber-Reinforced Cement Composites (HPFRCC) has outstanding durability, and has attracted interest because of its ductility and development of strength, which allows a reduction of the self-weight of a structural member by substantially decreasing the cross section. Therefore, the present study aimed to improve the economic efficiency of HPFRCC by examining experimentally the flexural performance considering various characteristics of the steel fiber. To find an efficient fiber reinforcement method, the flexural performance was evaluated for different shapes, aspect ratios, and volume ratios of the steel fiber. Straight, hooked, and twisted fiber configurations were considered by adopting a fiber length longer than the usual 13 mm. The test results showed that HPFRCC reinforced by 19.5 nun-long straight fibers with a volume fraction of 1.5% shows better flexural performance than that reinforced by 13 mm-long straight fibers with a volume fraction of 2.0%. Consequently, HPFRCC with enhanced economic efficiency can be produced by adopting a reduced amount of steel fiber.