• Title/Summary/Keyword: Fiber Orientation for Thickness Direction

Search Result 16, Processing Time 0.023 seconds

Measurement of the Fiber Orientation Distribution for Thickness direction of Injection Molded Long Fiber Reinforced Polymeric Composites (장섬유강화 플라스틱 복합재의 사출성형에 있어서 두께방향의 섬유배향 분포측정)

  • 윤성운;박진국;조선형;김이곤
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.199-204
    • /
    • 1998
  • In this study, a method is presented which can be used to measure the fiber orientation distribution for thickness direction during injection molding using image processing. The intensity method in used for measuring the distribution. And the effects of fiber content, injection molding condictions on the orientation function are also discussed.

  • PDF

SALS Study on Transcrystallization and Fiber Orientation in Glass Fiber/Polypropylene Composites

  • Na, Kun;Park, Han-Soo;Won, Hong-Youn;Lee, Jong-Kwan;Lee, Kwang-Hee;Nam, Joo-Young;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.499-503
    • /
    • 2006
  • This report presents a new technical approach for evaluating the fiber orientation of composites using small-angle light scattering (SALS). Glass fiber (GF)/polypropylene (PP) composites with different fiber orientations were prepared by drawing compression-molded specimens. The drawn samples were remelted and then annealed at $150^{\circ}C$ in order to induce a crystalline structure on the fiber surface, and then underwent SALS analysis. The samples showed a combination of circular and streak patterns. The model calculations demonstrated that the number of nuclei on the fiber surface and the thickness of the transcrystalline layer affected the sharpness and intensity of the streak pattern. In addition, the azimuthal angle of the streak pattern was found to be dependent on the direction of the transcrystalline layer, which correlated with the fiber direction. This correlation suggests that the fiber orientation in the composites can be easily evaluated using SALS.

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

Measurement of Residual Stress Distribution in Injection-Molded Short Fiber Composites (단섬유 복합재료 사출성형물의 잔류응력 측정)

  • 김상균;이석원;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.61-63
    • /
    • 2001
  • Residual stress distribution in injection-molded short fiber composites was determined using layer-removal method. Polysterene with 3 vol% carbon fibers was injection-molded into the tensile specimen. With milling machine layer-removal process was conducted and the curvature data were acquired. Treuting and Read analysis which is assuming isotropic material, and White analysis considering anisotropy due to the fiber orientation were used to calculate residual stress of the flow direction through the thickness direction and compared with each other.

  • PDF

A study of structural analysis for plastic parts considering injection molding effects (성형효과를 고려한 플라스틱 사출품의 구조해석)

  • 박상현;김용환;김선우;이시호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • Due to the lighter weight and the higher freedom of design than metals plastics have been spot lighted in a wide number of applications. In the making plastic parts injection-molding process is one of the most general methods. During the injection molding process, filling-packing-cooling process, plastics have exposed to several external stresses and then plastic parts injected have molding effects which are known as anisotropic properties, orientation, and residual stress. Those molding effects are often shown as unexpected phenomena which are warpage, strength decrease, stiffness reduction, etc. In case of glass fiber filed plastics these effects are more significant than the ufilled ones. Therefore the molding effects have to be considered in the parts design using glass fiber reinforced plastics. We have developed the interface program in order to consider the molding effects in structural analyses of plastic parts using Heirarchical structural searching and layer handling in direction of thickness algorithm. The advantages of this program are the freedom of FE mesh between molding and structural analysis, the variable layer to the thickness direction of parts and the conveniences of data transferring and checking

  • PDF

The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate (초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향)

  • Kwon, Oh-Heon;Kwon, Woo-Deok;Kang, Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

On Evaluation of CFRP Composite Laimates Using Ultrasonic Transducers with Polarization Direetion (초음파 탐촉자의 분극성에 따른 CFRP 복합적층판 평가에 관한 연구)

  • Ra, Seung-Woo;Im, Kwang-Hee;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • This paper shows error in the polarization direction on ultrasonic transducers how sensitive the shear ultrasonic waves are to a little misoriented plies according to the angle variation of shear ultrasonic waves $0{\circ},\;45{\circ}$ and $90{\circ}$. Also, it is shown that shear waves, particularly the transmission mode with the transmitter and receiver perpendicular to cach other, have high sensitivity for detecting anomalies in fiber orientation and ply layup sequence that may occur in the manufacturing of composite laminates. Experimental results are agreed with a modeling solutions which was based on decomposition of shear wave polarization vector as it propagates through the composite laminates. This wave appeared considerably to be sensitive to CFRP composites to thickness direction along in-plane fibers.

Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission (음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subjected to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, acoustic emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. The damage process of SOP FML was divided by three parts, i.e., crack initiation, crack propagation, and penetration. The AE characteristics during crack initiation show that the micro crack is initiated at lower ply of the plate, then propagate along the thickness of the plate with creating tiber debonding. The crack grow along the fiber direction with occurring 60∼80dB AE signal. During the penetration, the fiber breakage was observed. As fiber orientation increases, talc fiber breakage occurs more frequently. The AE signal behaviors support these results. Cumulative AE counts could well predict crack initiation and crack propagation and AE amplitude were useful for the prediction of damage failure mode.

  • PDF